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Abstract— This work investigates the relationship between
the perception that people develop about a robot and the
understandability of the gestures this latter displays. The
experiments have involved 30 human observers that have rated
45 robotic gestures in terms of the Godspeed dimensions. At the
same time, the observers have assigned a score to 10 possible
interpretations (the same interpretations for all gestures). The
results show that there is a statistically significant correlation
between the understandability of the gestures - measured
through an information theoretic approach - and all Godspeed
scores. However, the correlation is positive in some cases
(Anthropomorphism, Animacy and Perceived Intelligence), but
negative in others (Perceived Safety and Likeability). In other
words, higher understandability is not necessarily associated
with more positive perceptions.

I. INTRODUCTION

The main question addressed in this work is whether there
is a relationship between the impression that people develop
about a robot and the understandability of its gestures, where
the word “understandability” means how unambiguous the
meaning of the gestures is for human observers. In addi-
tion, the experiments of this work investigate the interplay
between two major parameters underlying a gesture - speed
and amplitude - and its understandability. The main reason
for focusing on such problems is that gestures are the most
reliable communication channel in environments in which the
level of acoustic noise is high and, hence, the use speech (or
other audio signals) is difficult, if not impossible [1], [2]. In
line with this observation, the experiments of this work focus
on symbolic gestures that “[...] often are used to communi-
cate when distance or noise renders vocal communication
impossible [...] expressing concepts that also are expressed
verbally” [3].

Far from being rare, the noise conditions above are typical
of many everyday settings in which robots are likely to play
a major role in future like, e.g., shopping malls, airports,
stations and other public spaces. In these contexts, robots
should display gestures as understandable as possible be-
cause they compete with other stimuli designed to attract
and retain attention (advertisement, danger warnings, public
announcements, etc.). On the other hand, the literature sug-
gests that human users do not necessarily like more the robots
that gesture better: “[...] participants perceived [the robot]
as more likable [...] this effect was particularly pronounced
when the robot’s gestures were partly incongruent with
speech [...]” [4].
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For the reasons above, the analysis of the relationship be-
tween understandability and perception can help to avoid the
synthesis of gestures that, while effectively communicating
a desired message, might result into negative impressions.
Furthermore, the analysis of the effects due to changes
in amplitude and speed can help to synthesize gestural
stimuli that, while keeping the impressions of the users
sufficiently positive, are still effective at conveying their
messages. During the experiments, 30 independent observers
have been asked to watch 45 different gestures performed
by Pepper, a robotic platform manufactured by Softbank
Robotics. The stimuli have been obtained by manipulating
speed and amplitude of 5 standard animations available in the
library of the robot. For each stimulus, the 30 observers have
been asked to perform two tasks, namely to fill the Godpseed
questionnaire [5] and to rate 10 possible predefined inter-
pretations (higher ratings are attributed to interpretations
considered to be more correct).

The understandability has been measured with a func-
tion of the relative entropy [6], an information theoretic
quantity that depends on how uniformly the ratings of the
observers distribute across the possible interpretations. The
main advantage of such an approach is that the measure does
not depend on what the interpretation of a gesture is, but
on whether the different observers tend to give the same
interpretation - meaning that the gesture is actually under-
standable - or not. This is important because the manipulation
of amplitude and speed is designed to add noise and, hence,
to generate gestures that do not necessarily have a predefined
meaning or are of difficult interpretation.

The results show that there is a statistically significant
correlation between all Godpseed scores and understand-
ability, thus confirming that this latter contributes to the
overall perception that the observers develop about the robot.
However, while the correlation is positive in the case of
Anthropomorphism, Animacy and Perceived Intelligence, it
is negative in the case of Likeability and Perceived Safety.
In other words, at least when it comes to certain dimensions
of the Godpseed questionnaire, the understandability of a
gesture can be achieved only at the expense of the positive
impression. For what concerns the effect of amplitude and
speed, the results show that this latter does not change
significantly the understandability of gestures, while the
amplitude does. Therefore, such a parameter must be tuned
more carefully to ensure that a gesture is understandable
enough to fulfill its communicative function.

The rest of this paper is organized as follows: Section II
surveys the previous work; Section III describes the process



adopted to define and synthesize the 45 stimuli used in the
experiments; Section IV introduces the notion of understand-
ability and the approach adopted to measure it; Section V
reports on experiments and results and the final Section VI
draws some conclusions.

II. SURVEY OF PREVIOUS WORK

The literature presents several works that address the role
of gestures in Human-Robot Interaction. In most cases, the
starting point is the observation that gestures are an essential
component of nonverbal communication in Human-Human
exchanges [7], [8]. Therefore, it should be possible to synthe-
size gestures aimed at enriching Human-Robot Interactions
with layers of socially and psychologically relevant infor-
mation, in the same way as natural gestures do when people
communicate with one another [9]. In other cases, the focus
is on deictic gestures, i.e., gestures that attract the attention of
the users towards objects in the environment. Besides being
useful from a practical point of view, these gestures have
the advantage of fostering joint attention between robots and
their users, a prerequisite necessary for establishing effective
interactions.

The experiments proposed in [10] show that people rec-
ognize cooperative gestures and tend to establish more
effective collaborations with the robots that display them.
This happens in particular when the gestures are abrupt and
front-oriented. Furthermore, there is a correlation between
the tendency to recognize and accept the cooperative gestures
of the robot and the ability to recognize human gestures.
Similarly, the experiments presented in [11] show that the use
of synthetic gestures during robot story-telling is predictive
of how well the listeners remember the details of the stories.
The use of gestures to improve the performance in a task is
the subject of the experiments in [12] as well. In particular,
this work shows that the users understand better what a robot
says when this latter imitates their gestures, thus showing
entrainment. Finally, the experiments described in [13] show
that synthetic gestures can increase the engagement of the
people involved in an interaction with robots, while the
approach proposed in [14] shows that human observers can
interpret synthetic gestures in terms of emotions.

For what concerns deictic gestures, the approach proposed
in [15], [16] aims at attracting the attention of the users
to objects in the environment. The experiments show that
the users understand what the targets of the robot’s deictic
gestures are. In the case of the experiments proposed in [17],
it is the robot that recognizes the target of a deictic gesture
displayed by a human user through the multimodal analysis
of speech and actual gestures.

To the best of our knowledge, the only work on how
recognizable the synthetic gestures of a robot are is available
in [18]. The experiments of such a work revolve around
15 stimuli that are recognized by human observers with
an accuracy that ranges between roughly 10% and almost
100%. The main finding of the article is that the limited
number of Degrees of Freedom in the robots makes them
unable to perfectly imitate the human gestures and, hence,

the agreement between observers is, on average, around
60%. The main difference between such a paper and this
work is that here the focus shifts from recognition rate to
understandability, i.e., from the ability of human observers
to recognize what a gesture is expected to mean to the
tendency of human users to attribute the same meaning to the
same gesture. Furthermore, this work analyzes the interplay
between understandability and users’ perception.

III. THE STIMULI

Gestures are “movements of the body (or some part of it)
used to communicate an idea, intention or feeling” [7]. The
process for the definition of the stimuli revolves around em-
blems, the gestures that are “used intentionally by the sender
to communicate a specific message to an individual or group
[...] in many cases, to substitute for the spoken word(s)” [8].
For this reason, the process aimed at the synthesis of the
stimuli for the experiments starts with the selection of 5
animations - the core gestures hereafter - available in the
standard library of the Pepper, the robotic platform used in
this work. According to the documentation accompanying
the robot, these gestures are designed to convey the following
messages1:
• Disengaging / Send-away;
• Engaging / Gain attention;
• Pointing / Giving Directions;
• Head-Touching / Disappointment;
• Cheering / Success.

The inclusion of two pairs of gestures that convey messages
opposite to one another - Engaging vs Disengaging and
Cheering vs Disappointment - aims at limiting as much as
possible ambiguity and confusion between the meaning of
the different core stimuli.

The rest of the process aims at adding noise to the core
gestures above and, as a consequence, to synthesize gestures
of different understandability. In particular, two parameters -
speed λ and amplitude α - have been manipulated to generate
9 different variants for each of the 5 core gestures, thus
resulting into the 45 stimuli adopted during the experiments.
Each core gesture has been synthesized using three different
values of λ, namely 15, 25 and 35 frames per second (fps),
where 25 fps is the original speed of the core gestures.
Furthermore, for each value of λ, the difference ∆i(t) =
θi(t) − θi(t − 1) - where θi(t) is the angle between the
two mechanical elements connected by joint i - has been
multiplied by three different values of α - 0.50, 0.75 and
1.00 - for all values of i (meaning all joints) and t (meaning
all frames).

The result of the process is a set of 45 stimuli that can
be represented as triples (k, α, λ), where k ∈ [1, . . . , 5] is an

1The animations associated to the core stimuli are available
on the version 1.6B of Pepper in the following directories:
“animations/Stand/Gestures/No 3” (Disengaging),
“animations/Stand/Gestures/Hey 2” (Engaging),
“animations/Stand/Emotions/Negative/Hurt 1” (Pointing),
“animations/Stand/Gestures/Far 3” (Head-Touching),
“animations/Stand/Emotions/Positive/Happy 1” (Cheering).



Age Range 18-22 23-25 26-30 31-35 36-40 ¿40
No. of Subjects 11 6 6 3 1 3

TABLE I
AGE DISTRIBUTIONS OF THE SUBJECTS INVOLVED IN THE

EXPERIMENTS.

index that accounts for the core gesture the stimulus derives
from, α is the amplitude and λ is the speed. The triples in
which α = 1.00 and λ = 25 correspond to the core gestures.

A. Annotation

The 30 observers involved in the experiments (see Sec-
tion V for more details) have watched the 45 stimuli and, for
each of them, they have filled the Godpseed questionnaire [5]
(all observers have watched and rated all stimuli). The goal
of the Godspeed questionnaire, is to measure, in quantitative
terms, the perception that people develop about a robot
they observe or interact with. In particular, the questionnaire
allows one to rate the robot along the following dimensions:
• Anthropomorphism: tendency of human users to at-

tribute human characteristics to a robot;
• Animacy: tendency of human users to consider the robot

alive and to attribute intentions to it;
• Likeability: tendency of human users to attribute desir-

able characteristics to a robot;
• Perceived Intelligence: tendency of human users to

consider intelligent the behavior of a robot;
• Perceived Safety: tendency of human users to consider

safe the interaction with a robot.
The stimuli have been administered in random order and, to
avoid tiredness effects, they have been split in three groups
of 15 that have been rated in three separate sessions - one
hour long each - held in three consecutive days.

The observers were selected randomly among the people
that have responded to a call for participation distributed at
the University of Glasgow, where the experiments of this
work have been performed. The resulting pool of observers
includes 10 women and 20 men of different ethnic and
national origin, their age distribution is available in Table I.
Only 3 of the 30 observers have interacted with a robot
before having been involved in the experiments of this work.
The payment for the participation has been of 6 British
Pounds per hour, the minimum legal hourly wage in the
United Kingdom.

In addition to filling the questionnaire, the observers have
rated T = 10 possible meanings that can be attributed to the
stimuli. In particular, the observers have assigned a score
between 0 and L = 4 to each meaning, with higher scores
being attributed to meanings considered more correct. The 10
possible interpretations are the same for all stimuli and are
as follows: Getting Distracted; Aggressing, Flirting, Point-
ing, Complaining, Cheering, Reflecting, Teasing, Rejecting
and Welcoming. Five of these interpretations correspond,
according to the documentation provided by the robot’s

manufacturer, to the actual meaning of the core gestures,
while the other five have been selected to be as different as
possible from each other and from the meaning of the core
gestures.

IV. UNDERSTANDABILITY AND ITS MEASUREMENT

The rating approach adopted to score the possible mean-
ings of a stimulus (see Section III-A) accounts for the
role of emblems - the particular class of gestures the core
stimuli belong to - as codified signals, i.e., as signals that
are “steadily linked to a meaning, so that the two make
a signal-meaning pair [...] like it happens, for instance,
with the lexical items of a verbal lexicon” [19]. For this
reason, this section proposes to measure understandability as
a function of entropy [6], an information-theoretic criterion
that accounts for how uniformly the scores of the observers
distribute across the possible interpretations of every stimu-
lus.

For each of the 45 stimuli, the result of the meaning rating
process (see end of Section III-A) is a matrix M = {mij},
where mij is the score that observer i (where i = 1, . . . , N )
assigns to interpretation j (where j = 1, . . . , T ). The
following sum can be interpreted as the total number of votes
that, for a particular stimulus, interpretation j has received:

uj =

N∑
i=1

mij . (1)

Following the above, the probability pk of interpretation k
receiving a vote can be estimated as follows:

pk =
uk∑N

i=1

∑T
j=1mij

, (2)

where the numerator is the sum over all elements of matrix
M . This makes it possible to estimate the relative entropy
of the distribution in the following terms:

Hr =
−
∑T

j=1 pj log pj

log T
, (3)

where Hr ∈ [0, 1]. The value of Hr is 0 when all votes have
been attributed to one particular interpretation k (pk = 1
and pj = 0 for j 6= k), while it is 1 when all interpretations
have received the same number of votes. In other words,
the relative entropy is a measure of uncertainty that ranges
between 0 (full certainty) and 1 (full uncertainty). In this way,
the following function U can be interpreted as a measure of
understandability:

U = 1−Hr. (4)

In fact, U = 1 corresponds to a situation in which one
interpretation attracts scores different from 0 and all the
others attract only null scores (the gesture is unambiguously
understandable), while U = 0 corresponds to a situation in
which all interpretations receive the same rating (the gesture
is too ambiguous to be understandable).
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Interpretation Analysis

Fig. 1. The upper chart shows the value of pk̂ (the probability if the gesture’s interpretation that has attracted more votes) and, correspondingly, the most
probable interpretation. The lower chart shows the relative entropy associated to the individual sitmuli.

V. EXPERIMENTS AND RESULTS

Section IV proposes a measure of understandability that is
expected to depend not on whether the observers understand
the actual meaning of a gesture, but whether they all tend
to assign the gesture the same meaning. The upper chart of
Figure 1 shows that, for each of the 45 stimuli, it is possible
to identify the meaning that has received the largest number
of votes or, according to the notation of Section IV, the
meaning k̂ that satisfies the following equation:

k̂ = arg max
k∈[1,T ]

pk, (5)

where k̂ is the index of the most probable meaning according
to the ratings of the observers. The chart shows, for each
stimulus, the value of pk̂ and the corresponding interpreta-
tion, while the lower chart shows the understandability value.
The interpretations are not always coherent with the meaning
of the core gesture a given stimulus derives from. The stimuli
that are interpreted more similarly to their respective core
gestures are Disengaging (8 out of 9 variants are interpreted
as Rejecting), Engaging (7 out of 9 variants are interpreted
as Welcoming) and Pointing (6 out of 9 variants). In the
case of Head-Touching, the most frequent interpretation is
Complaining (4 out of 9 variants), and, in the case of
Cheering, it is Welcoming (5 out of 9 variants).

The lower chart of Figure 1 shows that the highest values
of the understandability correspond to the variants of the
Disengaging core gesture. This seems to suggest that a
higher U corresponds to gestures that are better recognized.
However, some of the lowest understandability values can
be observed in the case of the other core gesture that is
correctly recognized, namely Engaging. This confirms that
U is independent of the actual meaning of the gesture and it
accounts only for how certain are the different observers in

assigning the meaning to a gesture. In the case of Engaging,
the observers rate higher the actual meaning of the core
gesture, but they do it with less certainty (meaning that
they rate high other interpetations as well). Similarly, the
interpretation of some stimuli does not correspond to the
underlying core gesture, but the understandability is high
(e.g., the Head-Touching U values are higher, on average,
than the Engaging ones).

The observations above confirm that U actually captures
the understandability of a gesture, defined as the property
of conveying a message that observers tend to agree upon,
rather than the ability of the observers to understand what
the core gestures underlying the stimuli mean, in line with
the goals U has been defined for.

A. Effect of Speed and Amplitude

Section III shows that the process for the synthesis of the
stimuli includes the manipulation of speed λ and amplitude α
with the goal of producing gestures of different understand-
ability U . Figure 2 shows the average of U over all stimuli
that share the same values of λ and α. The chart shows that
the highest understandability values are observed for the core
gestures (α = 1.00 and λ = 25 fps) and for the stimuli for
which α = 1.00. This suggests that changing the speed of
a gesture does not make it more difficult to understand its
meaning. Vice versa, by changing the amplitude, the average
understandability values decrease by up to 40% with respect
to the core gestures.

Overall, Figure 2 confirms that the approach adopted for
the synthesis of the stimuli has been effective in gener-
ating gestures of different understandability. Furthermore,
the figure suggests that the understandability of a gesture
depends on its morphology - represented in this case by the
values θi(t) - more than on its speed. The confirmation is
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Fig. 2. Average relative entropy across all core stimuli for different (α, λ)
pairs: C1 corresponds to (0.50, 15), C2 to (0.75, 15), C3 to (1.00, 15), C4
to (0.50, 25), C5 to (0.75, 25), C6 to (1.00, 25), C7 to (0.50, 35), C8 to
(0.75, 35), C9 to (1.00, 35). The C6 bar corresponds to the average over
the core stimuli.

Ant Ani Lik Int Saf
ρ 0.67∗∗ 0.50∗∗ -0.37∗ 0.41∗∗ -0.34∗

TABLE II
CORRELATION BETWEEN UNDERSTANDABILITY AND GODSPEED

SCORES. THE DOUBLE STAR MEANS THAT THE CORRELATION IS

SIGNIFICANT AT CONFIDENCE LEVEL 0.01, WHILE THE SINGLE ONE

MEANS THAT THE CORRELATION IS SIGNIFICANT AT LEVEL 0.05. IN

BOTH CASES THE FDR CORRECTION HAS BEEN APPLIED.

that there is no statistically significant difference between
the understandability of the gestures in conditions C3, C6
and C9, i.e., those that have different speeds, but do not
change the values of the θi(t) (according to a t-test, after
application of the False Discovery Rate correction [20]). Vice
versa, there is a statistically significant difference in terms
of understandability between these gestures and the other
stimuli (according to a t-test, after application of the False
Discovery Rate correction [20]).

B. Understandability and Godspeed Scores

Table II shows the correlations between Godspeed scores
and understandability. All values are statistically significant
according to a t-test after application of the False Discovery
Rate correction [20]. The results show that the correlation
is positive in the case of Anthropomorphism, Animacy and
Perceived Intelligence, but negative in the case of Likeability
and Perceived Safety. In other words, higher understandabil-
ity is associated with higher ratings along those dimensions
that, overall, account for how effective the robot is perceived
to be at performing a given task (displaying understandable
gestures in this case). Vice versa, higher understandability
is associated with lower ratings along those dimensions that
account for how effective the robot is perceived to be at
establishing interactions acceptable and satisfactory for the
human user - its social skills in short.

One possible explanation is that such a pattern reproduces
the “task and social-emotional role differentiation” [21],
a widely investigated effect in human-human interactions,
especially when it comes to small groups of people expected
to achieve a goal. The main trace of such an effect is that

people that appear to be more effective at accomplishing
tasks tend to be considered less competent in managing
social aspects [22]. However, “This is not to say that the task
specialist will actually be disliked, but rather that his task
emphasis will tend to arouse some negative feelings [...] Such
feelings merely neutralize any strong positive feelings other
members may hold toward him” [23]. In other words, the
negative correlations in Table II do not necessarily mean that
the users do not like the robot, but simply that the perception
of competence prevails.

Similar effects have been observed earlier in the Human-
Robot Interaction literature. For example, experiments aimed
at collaborative decision making between people and robots
show that “[...] participants conformed more to the iCub’s
answers [...] about functional issues than when they were
about social issues [...] the few participants conforming to
the iCub’s answers for social issues also conformed less for
functional issues.” [24], meaning that the subjects either trust
the robot from a task point of view or from a social point of
view, but not both. Similarly, experiments on collaborative
work between people and robots suggest that “efficiency
is not the most important aspect of performance for users
[...]” [25], i.e., users prefer to deal with a socially adept
robot than with a fully efficient one, if the two options are
alternative to each other. In a similar vein, the users involved
in Lego playing “liked the faulty robot significantly better
than the robot that interacted flawlessly” [26] and, in the case
of the interactions between people and companion robots,
“while significantly affecting subjective perceptions of the
robot and assessments of its reliability and trustworthiness,
the robot’s performance does not seem to substantially
influence participants’ decisions to (not) comply with its
requests” [27].

VI. DISCUSSION AND CONCLUSIONS

This article revolves around the understandability of the
synthetic gestures displayed by a robot, where the un-
derstandability has been defined as the property of being
attributed the same, or similar, meaning by multiple human
observers. In line with such a definition, the article has pro-
posed an approach for the measurement of understandability,
based on a function of relative entropy, that does not take
into account what is the interpretation that people have of a
given gesture, but only whether different people observing
the same gesture tend to interpret it in the same way.

The experiments have involved 30 observers that have
watched and rated 45 different gestural stimuli (all observers
have observed and rated all stimuli). The results show that
the understandability of a gesture depends on its morphology
- represented in this work by the angles between mechanical
elements at different joints - and not, or only to a limited
extent, on its speed. Furthermore, the results show that the
understandability correlates positively with certain Godspeed
dimensions - Anthropomorphism, Animacy and Perceived
Intelligence - and negatively with others - Likeability and
Perceived Safety.



One of the main indications of the results is that different
gestures have different robustness to changes in speed and
amplitude. If it is true that 4 core gestures out of 5 attract
no more than 2 different interpretations (the only exception
is Head-Touching that attracts 4), it is true as well that only
for two core gestures - Engaging and Disengaging - there is
one interpretation that is attributed at least 7 times out of the
9 variants. In other words, there are three core gestures for
which the interpretation changes frequently with the values
of α and λ. This is important whenever gestures are added
variability in order to look less mechanic and more realistic.
In this respect, one of the possible future directions of this
work is to investigate what are the limits in the variability of
a robotic gesture that need to be respected to avoid undesired
changes of meaning attribution.

The role of the noise is important not only in view of how
the gesture is interpreted, but also in light of the interplay
between understandability and Godspeed scores. In line with
other results of the literature - both in Human-Human Inter-
action [21], [22], [23] and Human-Robot Interaction [24],
[25], [26], [27] - improving the performance of the robot
leads to lower Likeability and Perceived Safety ratings. In
other words, a robot that privileges the performance is a robot
that risks to fail the social aspects of an interaction. This
is important because the literature shows that an effective
interaction between people and robots requires these latter to
be appreciated not only for how well they work, but also for
how positive is the perception they inspire from a social point
of view [27]. In this respect, adding noise to the gestures can
be a way to find a good trade off between the two needs -
conflicting according to the experiments of this work and
the previous results of the literature - of having a robot that
performs well while being socially acceptable. How to find
such a trade off can be one of the future directions for this
work.
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