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1 Introduction

Figure 1 shows the Threshold of Hearing - the minimum intensity required for
a sound to be heard - as a function of frequency. The lowest part of the curve
corresponds to the frequencies typical of human speech (roughly between 20
and 400 Hz). Thus, human ears are most sensitive to human voices than to any
other sound in the environment. From an evolutionary point of view, the most
likely explanation is that speech has been a key advantage for our species [7].
Therefore, it is not surprising to observe that technology has made major efforts
aimed at dealing automatically with speech signals [19].

The earliest technological approaches revolving around speech signals date
back to the first half of the Twentieth century. It is in this period that the diffu-
sion of telecommunications has fostered the development of coding systems, i.e.,
of automatic methodologies capable to represent a signal in a form as compact
as possible. The main goal of these efforts was to improve the efficiency of trans-
missions, i.e., to convey as much information as possible using as little data as
possible. In parallel, research laboratories started to work on Automatic Speech
Recognition (ASR), the task of automatically transcribing speech signals [19].
After a pioneering stage, it is during the seventies that ASR technologies make
the most important progress. The reason is twofold. On the one hand, it is
in such a period that computers have become powerful enough to deal with
the ASR problem. On the other hand, it is in the seventies that the statisti-
cal methodologies still today underlying most ASR approaches make their first
appearance in the speech technology community.

The initial ASR attempts targeted relatively simple tasks like the automatic
transcription of phone numbers. In this case, the predefined list of words that
a speech recognition system can actually transcribe is limited (“zero”, “one”,
“two”, ..., “nine”). Furthermore, the utterances are not connected, i.e., they
are separated by silences long enough to easily segment the speech stream into
individual words. Over the years, the efforts have addressed increasingly more
challenging recognition tasks. First the automatic transcription of people read-
ing written texts (the data does not include noise, there are no disfluencies or
grammatical errors, language models can constrain effectively the space of the
transcription hypotheses to be searched) then the recognition of spontaneous
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Figure 1: Absolute Threshold Of Hearing (TOH). The TOH is plotted on a
logarithmic scale and shows how the energy necessary to hear frequencies be-
tween 50 and 4000 kHz is significantly lower than the energy needed for other
frequencies.

speech in naturalistic settings (the data includes noise, there are disfluencies
and grammatical errors, the language models constrain to a limited extent the
space of possible transcription hypotheses). Applications like Siri and Cortana,
capable to effectively interact with their users via speech, come at the end of
this long process and rely on unprecedented large volumes of data available
through the development of Internet based services and the diffusion of mobile
platforms.

Typically, ASR approaches include a normalisation step aimed at eliminat-
ing, or at least attenuating, variability in the speech signal that is not relevant
to the automatic transcription problem. Normalisation methodologies target
the suppression of variability due to sources like, e.g., echoes or environmental
noise. Furthermore, they target nonverbal and paralinguistic aspects of speech
like, e.g., prosody (loudness, pitch, speaking rate, etc.), vocalisations (laughter,
crying, etc.), use of silence and pauses, overlapping speech, turn-taking, etc.
The reason is that these elements do not change the transcription (what people
say) even if they contribute to its sense (how people say it). However, the last
10 — 15 years have witnessed increasingly more efforts aimed at analysis and
understanding of nonverbal components of speech, especially in fields like Com-
putational Paralinguistics [23] and Social Signal Processing (SSP) [31, 32]. This
has led to approaches for the automatic analysis of a wide spectrum of social
and psychological phenomena that speech conveys, including emotions, person-
ality, dominance, roles, effectiveness of delivery, etc. The efforts in this direction
have made it clear that it is not possible to correctly transcribe speech without
taking into account communicative aspects that paralanguage and nonverbal
communication convey. However, a full integration between ASR and SSP has
still to be achieved.

The goal of this chapter is to provide a short introduction to the technologies
mentioned above, in particular when it comes to the main technological and



methodological issues and components. The rest of the chapter is organised as
follows: Section 2 introduces Automatic Speech Recognition and its state-of-
the-art, Section 4 shows how the computing community deals with nonverbal
aspects of speech and Section 4 draws some conclusions.

2 Automatic Speech Recognition

ASR is the task of automatically transcribing speech data. In mathematical
terms, this corresponds to map a signal S = (sg, s1,...,Sn5) into a sequence of
words W = (wy,ws,...,wr), where s is the k" sample of the signal and N
is the total number of samples in S. Sample s; is a physical measurement -
typically air pressure - made at time kAt, where At is the length in seconds
of the time interval between two consecutive measurements. When using a
microphone, the physical measurement that accounts for air pressure is the
displacement of an elastic membrane, positioned inside the microphone, with
respect to its position of equilibrium. The value of At is constant during a
recording and it is called sampling period. Its inverse is the sampling frequency
F' in Hertz, i.e., the number of times per second that a measurement has been
done during the recording. In the case of speech, the typical sampling frequency
is 44 kH z when high quality is required (e.g., broadcast material or commercial
audio products) and 8 kH z when low quality is sufficient (e.g., phone and radio
communications).

Figure 2 shows the main components of an ASR system. The front-end is the
step that takes the signal S as input and gives as output a representation of it
suitable for further processing. In current state-of-the-art ASR technologies, the
representation is a sequence X = (&1, Zo, ..., T ) of observation vectors, where
M is the total number of vectors in sequence X. The observation vector Zj is
extracted from a short analysis window - the typical length is 30 ms - that starts
at time kB, where B is the interval of time between the start of two consecutive
analysis windows (in the most frequent case, B = 10 ms). Typically, two
consecutive windows are partially overlapping (with the parameters mentioned
above the overlapping is 20 ms).

The rationale behind such a representation is that spoken sentences are
sequences of phonemes, the atomic sounds that compose every word in a given
language. Ideally, there should be one observation vector per phoneme, but it
is not possible to know a-priori where the phonemes are. Windows positioned
at regular time steps do not correspond exactly to phonemes. However, they
are expected to entirely include one phoneme at least in some cases. This is
the reason why the windows must be long enough to frequently enclose one
phoneme, but short enough to rarely include two consecutive phonemes. The
use of statistical approaches for the transcription step (see below) allows one
to deal with the uncertainty in the position of the windows with respect to the
actual phonemes.

The second stage, the actual transcription step, takes X as input and gives
as output the sequence of words W = (wq,...,wr) that is the final output of



the ASR system. In general, the transcription relies not only on X, but also
on two linguistic resources, namely the lexicon and the language model. The
lexicon L is the list of words that the system can actually give as output. In
other words, every w; € W must be one of the entries of the lexicon L. If the
signal contains a word that is not in the lexicon, the system will still give as
output one of the words of the lexicon, typically the one that is closest from a
phonetic point of view. The language model is a probability distribution p(W)
that estimates how probable a given transcription W is. Language models are
typically obtained by counting the occurrences of individual words and N-grams
(sequences of N consecutive words) in large corpora of text. The main role of
lexicon and language model is to constrain the space of the hypotheses to search,
i.e., to eliminate those transcriptions that are too unlikely to be considered.

State-of-the-art ASR. systems find the transcription W that satisfies the
following equation:

W = arg max p(X, W)p(W) (1)

where p(X, W) is a probability distribution defined over the joint space of obser-
vation and word sequences and Wy, is the set of all possible sequences of words
belonging to the lexicon L. In other words, an ASR system takes into account
all possible transcriptions for a given observation sequence X and, for each tran-
scription, estimates the probability p(X, W)p(W). Then, the transcription that
corresponds to the largest probability is retained as the actual transcription of
the input speech data. Given that the number of transcriptions is prohibitively
large, lexicon and language model are used to eliminate all transcriptions that
are unlikely to match the observation sequence X.

The description above shows that, from a technical point of view, the most
distinctive aspects of an ASR system are the type of information that X conveys
and the approach adopted to estimate p(W, X)p(W). Furthermore, the lexicon
L typically characterises the application domain for which the ASR system has
been designed, from the simple transcription of phone numbers (only ten items
in the lexicon corresponding to the digits from zero to nine) to the transcription
of unconstrained conversations (up to 100,000 items in the lexicon expected to
cover 90 — 95% of all words used in a generic conversation). The rest of this
section focuses on front-end and automatic transcription.

2.1 Front-End

The extraction of the observation vectors from the speech signal is typically
referred to as feature extraction because the components of the observation
vectors are called features. These latter are physical measurements expected
to convey information relevant to the recognition of the words being uttered.
In particular, the features are expected to be different and stable for different
phonemes. The assumption of stability over time intervals comparable to the
duration of a phoneme is known as piecewise quasi-stationarity assumption and
underlies virtually every ASR approach proposed in the literature.
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Figure 2: The Figure shows the main technological components of an Automatic
Speech Recognition System. The front-end takes as input the speech signals and
gives as output a sequence of observation vectors. The Automatic Transcription
maps the sequence of vectors into a sequence of words.

The features most commonly extracted from the speech signals are the Mel-
Frequency Cepstral Coefficients (MFCC) [35] and the Perceptual Linear Predic-
tion coefficients (PLP) [12]. In both cases, the goal is to obtain a smooth version
of the spectral envelope, i.e., the curve of the frequency-amplitude plan that de-
scribes the way the energy of a sound is distributed across different frequencies.
The main difference between the actual distribution and the envelop is that this
latter is designed to be steady (no jumps of the first derivative) and smooth (no
major oscillations) while following as close as possible the actual distribution.
In intuitive terms, the spectral envelope can be thought of as the curve that
connects the maxima of a spectrum, hence the use of the term envelop.

MFCC and PLP coefficients are the most commonly adopted features, but
the literature provides a large number of other methodologies. However, the
overall attempt is always to account for the spectral properties in the most
compact possible way while conveying all the information necessary to correctly
transcribe the signals.

2.2 Automatic Transcription

The transcription step aims at finding the sequence of lexicon words W that
satisfies Equation (1). In intuitive terms, W is the sequence of lexicon entries
that maximises the joint probability of W and X multiplied by the probability
of W. The main approaches adopted in the literature to estimate p(X, W) and
p(W) are the Hidden Markov Models [20] and the N-gram models [17].

The main assumption underlying Hidden Markov Models (HMM) is that
there is a sequence of non-observable (hidden) states underlying the sequence
of observations X. In the case of ASR, the sequence of the states corresponds
to a sequence of phonemes that compose the words in W. Typically, there are
three states for every phoneme, namely onset, apex and offset. From a technical



Figure 3: The figure shows how a left-right HMM works. The emission proba-
bility density functions associated to the states allow one to estimate the prob-
abilities of an observation vector & belonging to one of the states, the transition
probabilities allow one to estimate the probability of passing from one state to
the other.

point of view, the sequence of states corresponding to a word is obtained by
concatenating multiple HMMs each corresponding to a phoneme. Overall, the
expression of p(X, W) in the case of a HMM is as follows:

M

p(X, W) = Ts,bs, (fl) H Usy s s, (fk) (2)
k=2

where s; is the j'h state in the sequence of states that underlies W, 7y, is the
probability of starting with state s; (i.e., the probability of starting the sequence
with a certain phoneme), ag, s, _, is the probability of a transition between state
sk—1 and sg, and b, (Z) is the probability of observing Z when the underlying
state is si (the emission probability function). Since self-transitions are possible,
the HMMs can accommodate variations in length of the same phoneme (multiple
observations can be attributed to the same underlying state).

The values of 7, are typically obtained by counting the number of times in a
given collection of spoken data an utterance starts with a certain phoneme and,
hence, the underlying HMM starts with a certain state. Similarly, the transition
probabilities are estimated by counting how frequently in a collection of spoken
data a given state s; is followed by another state s;. In the case of the emission
probability functions, the most common approach to get the explicit expression
of bs(Z) is the application of the Expectation-Maximization [3]. In general, the
emission probability functions correspond to Mixtures of Gaussians:

G
bo(@) = D N (TS, fins) (3)
k=1
where the mizing coefficients a, sum up to 1, N(.) is a multivariate Gaussian,
ks and [igs are covariance matrix and mean of Gaussian k in the mixture of
state s. Figure 3 shows how the HMMs work in practice.
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Figure 4: The Figure shows the main technological components of an Automatic
Speech Recognition System. The front-end takes as input the speech signals and
gives as output a sequence of observation vectors. The Automatic Transcription
maps the sequence of vectors into a sequence of words.

The transcription step actually consists in finding the sequence of states
(hence of phonemes and words) that better accounts for the observation se-
quence X. Such a task is performed with the Viterbi Algorithm [9] that is
capable to find the sequence of states that maximises the probability p(W, X).
However, the search through all possible sequences W can be constrained with
a language model p(W) so that the computational effort is reduced. The most
common approach to estimate p(W) is the N-gram model. The reason is not
only that these models appear to be the most effective, but also that they natu-
rally fit the Viterbi algorithm. The expression of p(W) with an N-gram model

is as follows:
T

p(W) = H plwg|wp—1,We—2,. .., Wr_N+1) (4)
k=N
where N is the order of the model, wy, is the k** word of W and T is the total
number of words in W. While being simple, the N-gram models have been
shown to be more effective than models trying to take into account the meaning
of the words or the grammar of a language.

The main role of p(W) in the transcription is to lower the probability of
transcriptions that, while making sense from an acoustic point of view, are
not necessarily observable in a given language. This applies in particular to
short sequences that include only function words, i.e., terms that are content-
independent, but allow one to build grammatically correct sentences (articles,
prepositions, etc.). Such short sequences include expressions such as “there
is a”, “it is on”, etc., that, while being frequent, often can be confused with
longer words. In general, content words are less frequent than function words
(roughly one third of all the words appearing in a corpus occur only once), but
the acoustic evidence is sufficiently strong to counterbalance the low value of

p(W).



3 Nonverbal Vocal Behaviour

Besides extracting features from the speech signal, the front-end of an ASR sys-
tem typically tries to eliminate any source of variablity that is not relevant to
the automatic transcription of what is being said, a step typically referred to as
normalisation. This applies to variability resulting from gender, age, emotional
state, accent, speaking style and any other factor that, while influencing the
way something is said, does not influence the transcription of an utterance. The
reason is that the ASR performances increase when there is a consistent rela-
tionship between the phonemes being uttered and the features being extracted.
However, these sources of variability have recently become the focus of domains
like Computational Paralinguistics [23] and Social Signal Processing [32]. The
reason is that nonverbal components of speech - prosody, voice quality, vocalisa-
tions, disfluencies, intonation, etc. - convey socially and psychologically relevant
information about speakers and their interaction.

Figure 4 shows the main technological components of systems that analyse
nonverbal communication in speech. Like in the case of ASR, speech data is first
segmented into short analysis windows (typically 20 — 30 ms) that overlap each
other and start at regular time-steps (typically 10 ms). In this way, it is possible
to extract short-term properties from the speech signals, i.e., properties that can
be expected to be relatively stable for no more than a few tens of milliseconds
or the time that someone can hold a stable configuration of the articulators.
The result is that, for a given short-term property, it is possible to obtain as
many measurements as there are analysis windows that fit in the data (in the
case of 30 ms windows that start at regular time-steps of 10 ms, one second
of speech yields 970 measurements). These measurements are then summarised
with statisticals like average, variance, entropy, minimum, maximum, etc. In
this way, while not taking into account every single value of a measurement, it
is still possible to have an idea of its distribution over a speech sample.

The ultimate goal of the process above is to represent a speech sample as
a vector of physical properties that account for how a person speaks. Once
such a vector is available, it is then possible to apply statistical approaches that
can be used to infer the traits attributed by people. The short-term properties
adopted in the different works presented in the literature cover the most im-
portant speech properties. The measurements most commonly adopted target
pitch (the fundamental frequency), energy and speaking rate, i.e., the Big-Three
of prosody. Intuitively, these measurements account for the sound of the voice,
how loud a person speaks and how fast she does it, respectively. The statisticals
account for the distribution of the measurements. In particular, the average
accounts for the values that occur most frequently, the variance for how wide
is the range of the measurement, the entropy for its variability, minimum and
maximum (used only rarely because they can be outliers) for the dynamic range,
etc. Other short-term properties account for voice spectral properties such as
Mel Frequency Cepstral Coefficients (MFCC) [35], Harmonic-to-Noise ratio [4],
spectral tilt [14], etc.

The prediction step is performed using a wide spectrum of classification and



regression approaches. The former are adopted when nonverbal behaviour is
adopted to infer categorical information like, e.g., which of the six basic emotions
a speaker is displaying [22] or which is the role that someone is playing in a
meeting [10]. The latter are adopted when nonverbal behaviour is used to infer
dimensional information like, e.g., emotions represented in the Valence-Arousal
space or personality assessed along the Big-Five traits. From a mathematical
point of view, a classifier is a function f(Z) that maps a vector Z into ¢, where
this latter is a class that belongs to a predefined set C = {c1, ¢, ...,cn} (N is the
total number of classes). In contrast, a regressor is a function f(Z) is a function
that maps a vector # into a real number y. The choice between classifiers and
regressors depends on the particular problem being targeted. The literature
proposes a large number of classifiers and regressors, but the most popular and
effective are, e.g., Support Vector Machines [11], Deep Neural Networks [2],
LASSO [28], Logistic Regression [13], Gaussian Processes [21], etc.

While in the case of ASR all systems address the same problem - the auto-
matic transcription of speech recordings - in the case of Social Signal Processing
and Computational Paralinguistics, the technologies presented in the literature
address a large number of different issues. The earliest approaches focused on
emotion (see [22] for an extensive survey), but the latest technologies have ap-
plied methodologies like those described above to infer from speech information
such as role, conflict, dominance, synchrony, interest, personality, developmen-
tal disease in children, depression, etc. The rest of this chapter provides a short
state-of-the-art of the main problems addressed in the literature.

3.1 Analysis of Social Signals and Paralanguage

The computing literature proposes a large number of approaches aimed at in-
ferring socially and psychologically relevant phenomena from speech record-
ings [23, 31, 32]. One of the problems that have been addressed most exten-
sively is emotion recognition, i.e., the automatic identification of the emotions
that speakers experience based on the physical characteristics of their speech.
The problem has been the subject not only of many articles (see [22] for an
extensive survey), but also of several international benchmarking campaigns
in which a large number of different approaches have been adopted and com-
pared [24, 25]. As a result, it has been possible to perform a meta-analysis
showing that there is a set of features - called the Geneva Minimalistic Acoustic
Parameter Set (GeMAPS) - that appear to be more reliable than the others in
conveying information about the emotional state of a speaker [8].

In recent years, the attention has shifted towards other problems that can be
addressed using the approach depicted in Figure 4. In particular, a large number
of works and an international benchmarking campaign [26] have been dedicated
to the inference of personality traits - both self-assessed and attributed - from
nonverbal aspects of speech [30]. No feature set has been shown to be more
reliable than others like in the case of the emotions. However, a few indications
emerge from the literature. The first is that all works addressing the problem of
the relationship between speech and personality from a computing point of view



adopt trait-based personality models, i.e., models that represent personality as a
D-dimensional vector where every component accounts for a behavioural dimen-
sion. In most cases, the traits correspond to the Big-Five, five major dimensions
that have been shown to capture most individual differences (Openness, Consci-
entiousness, Extraversion, Agreeableness, Neuroticism) [5]. The second is that
the only task that can be performed with satisfactory performance is the predic-
tion of whether a person is above or below median with respect to every trait.
Finally, the third is that not all traits can be inferred equally well from speech.
In particular, the performances tend to be satisfactory only for Extraversion
and Conscientiousness.

Another domain where there has been a significant effort has been the recog-
nition of the roles that people play in a particular social setting [6, 10, 34]. The
main difference with respect to the problems mentioned above is that, in this
case, it is necessary to analyse recordings that include multiple voices. However,
the proposed approaches remain similar to those depicted in Figure 4. The only
difference is that there is a preliminary speaker diarisation step, i.e., a segmen-
tation of the audio recordings into interval in which only one person is expected
to speak [1, 29]. This allows one to use not only the features that have been
adopted for the inference of emotions and personality, but also features that
account for turn-taking, including speaking time distribution across speakers,
adjacency matrices, amount of overlapping speech, etc. [31, 32]. The main lim-
itation of this area is that the roles tend to be specific of a given setting and,
unlike the case of constructs like personality or phenomena like the emotions,
it is not possible to identify a general set of roles that applies to all possible
contexts.

In the case of other social and psychological phenomena, the number of
works was not sufficiently large to give rise to a research community, but the
approaches stem directly from those adopted for the other problems mentioned
so far in this section and, overall, replicate the scheme of Figure 4. Such phe-
nomena include, e.g., dominance [15], conflict [16], mimicry [18], depression [27],
interest [33], etc.

4 Conclusions

This chapter has provided a general introduction to the problem of machine
based decoding of speech and human voice. Such a definition encompasses all
technologies that automatically infer information from speech signals, whether
this means to automatically transcribe what a speaker is saying - the domain
is, in this case, Automatic Speech Recognition - or to predict information about
social and psychological aspects of speakers and their interactions with others
- the domains are, in this case, Social Signal Processing and Computational
Paralinguistics.

One of the main messages of the chapter is that the approaches adopted to
infer information from speech can be described in terms of two general schemes.
The first, underlying most Automatic Speech Recognition systems, has been de-
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picted in Figure 2. The second, underlying most systems aimed at Social Signal
Processing and Computational Paralinguistics, has been depicted in Figure 4.
A crucial problem in both cases is the extraction of features, i.e., automatic
measurements that account for the physical properties of speech. In the case of
the problems that have been addressed most extensively in the literature (ASR
and emotion recognition), it has been possible to identify feature sets that are
more reliable than the others or, at least, lead to satisfactory performances in
the majority of the experimental settings. In the case of those problems that
have been addressed more recently and less extensively, the identification of
reliable features is still an open issue.

For what concerns the machine intelligence aspect, i.e., the computational
approach aimed at mapping the features into information of interest (transcrip-
tions or social and psychological phenomena), the state-of-the-art in ASR is
the adoption of Hidden Markov Models, statistical sequential models that can
take into account temporal aspects of the data they take as input. In the case
of SSP and Computational Paralinguistics, the variety of approaches is wider
because the data is typically represented with a single vector and, then, any
type of classifier or regressor can be applied. However, Deep Neural Networks
have started to be used more and more frequently both in ASR and in the other
domains and they are likely to become one of the most common approach, if
not the dominant approach, in the next years.

The main application field of the technologies described in this chapter is
likely to be Human-Computer Interaction in all its multiple aspects, from speech
based personal assistants like Siri and Cortana, to social robots expected to
understand the inner state of their users. The main challenges concern the pos-
sibility to work in naturalistic environments where noise and lack of constraints
make it difficult to extract proper features and to constrain the space of possible
outcomes, respectively. Furthermore, speech technologies are used increasingly
more frequently in non-technological fields such as, e.g., social psychology and
cognitive neuropsychology. This will hopefully result into new insights about
human speech and its crucial role in our life.
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