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ABSTRACT

This article investigates whether it is possible to detect depres-
sion using less than 10 seconds of speech. The experiments
have involved 59 participants (including 29 that have been
diagnosed with depression by a professional psychiatrist) and
are based on a multimodal approach that jointly models
linguistic (what people say) and acoustic (how people say
it) aspects of speech using four different strategies for the
fusion of multiple data streams. On average, every interview
has lasted for 242.2 seconds, but the results show that 10
seconds or less are sufficient to achieve the same level of
recall (roughly 70%) observed after using the entire inteview
of every participant. In other words, it is possible to maintain
the same level of sensitivity (the name of recall in clinical
settings) while reducing by 95%, on average, the amount of
time requireed to collect the necessary data.
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1 INTRODUCTION

According to the World Health Organisation, “at a global
level, over 800 million people are estimated to suffer from de-
pression, equivalent to 4.4% of the worlds population |[...] the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICMI ’20, October 25-29, 2020, Virtual Event, Netherlands

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7092-9/20/08. .. $15.00
https://doi.org/10.1145 /XXX XXX . XXXXXX

single largest contributor to global disability (7.5% of all years
lived with disability in 2015) [...] the major contributor to
suicide deaths, which number close to 800,000 per year.” [41].
Still, diagnosing depression remains a challenging problem be-
cause the discrimination between the pathology and ordinary
forms of stress, anxiety or sadness is difficult [40]. In such a
context, Artificial Intelligence can help clinicians through the
development of automatic approaches for the identification
of people actually affected by depression.

To the best of our knowledge, the computing efforts made
so far have targeted mainly the improvement of the detection
performance and have addressed only to a limited extent, if
at all, the problem of how much data is necessary to make
a reliable decision about an individual (see Section 2). For
this reason, this article investigates whether it is possible
to perform depression detection with 10 seconds of speech
or less and, if yes, to what extent. The main reason why
such a problem is important is that realistic application
scenarios require one to deal with recordings that contain
only a few words (e.g., the use of data collected at help
lines [21]). Furthermore, when the speech data is obtained
through interviews or other forms of interaction that involve
medical personnel, reducing the amount of time necessary
to gather enough information lowers the costs associated to
depression diagnosis.

The experiments are based on state-of-the-art methodolo-
gies for joint modeling of linguistic and acoustic aspects of
speech (corresponding to what people say and how they say
it, respectively). The tests have been peformed over a corpus
of 59 clinical interviews that have involved 29 participants di-
agnosed with depression by professional psychiatrists and 30
that never experienced mental health issues. The results show
that less than 10 seconds are sufficient to achieve the same
level of recall (around 70%) that can be obtained when using
the entire clinical interview of every participant. Since the
average length of an interview is 242.2 seconds, such a result
means that the time required to interview the participants
can be reduced by 24 times without significant sensitivity
losses (sensitivity is the way recall is referred to as in clinical
settings).

The main reason why this is important is that recall mea-
sures the effectiveness at recognizing all depressed individuals
as such, i.e., at avoiding type II errors (classifying a depressed
individual as healthy), those that lead to the most negative
consequences from a clinical point of view. In fact, in the case
of a type I error (a control individual classified as depressed),
the consequence is that a healthy individual will be examined
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more thoroughly by doctors, but such an extra medical at-
tention will not be of harm. In contrast, in the case of a type
II error, a depressed individual will go undetected and will
not undergo proper treatment, thus joining the estimated
79% of depression patients that do not receive appropriate
care [24], a major issue in nowadays psychiatry.

The rest of this article is organised as follows: Section 2
surveys previous work, Section 3 describes the data, Section 4
presents the depression detection approach, Section 5 reports
on experiments and results, and the final Section 6 draws
some conclusions.

2 SURVEY OF PREVIOUS WORK

Coherently with its major impact on society (see Section 1),
depression is the psychiatric problem that the computing
community addresses more frequently. In particular, the
pathology has been the target of at least four benchmarking
campaigns based on two corpora used in a large fraction of
works published in the last decade. The first corpus includes
292 people asked to perform a Human-Computer Interaction
task [38, 39], the second involves more than 200 individuals
interacting with an artificial agent [34, 37]. In both cases, the
goal is the inference of the scores resulting fom the administra-
tion of self-assessment questionnaires, namely the BDI-IT [§]
and different versions of the Patient Health Questionnaire
(PHQ) [18].

The works using the data above include approaches based
on facial behaviour [2, 45, 46], paralinguistics [14] or multi-
modal combinations of different cues [43]. The experiments
presented in [2] focus on temporal dynamics of facial expres-
sions and predict the self-assessment scores resulting from
the questionnaires mentioned above. The best result is a
9.2 Root Mean Square Error (RMSE). In [45], the goal is
to identify facial depression markers, i.e., face regions and
actions most likely to account for depression, while in [46],
it is the inference of the BDI-II scores, a task performed
with 9.8 RMSE. The approach proposed in [14] focuses on
speech and includes two main steps, the first is the inference
of the particular range of the BDI-II score a person falls in,
and the second is the inference of the exact score in such
a range. An RMSE of 8.2 is the best result that the article
reports. The experiments in [43] are based on a multimodal
approach modeling face behaviour, speech and the manual
transcription of what people say. The best result is an F1
score of 75% in identifying people above the PHQ-8 threshold
score corresponding to depression.

The experiments presented in [31] show that text analysis
techniques allow one to identify social media posts written
by people that claim to be depressed. However, it is not
possible to test whether the claim is true. Actual depression
detection, meaning that the people involved in the experi-
ments have been diagnosed by a doctor, is the task addressed
in [3, 4, 10, 19, 23, 44]. The analysis proposed in [44] shows
that there is a statistically significant correlation between
measurable aspects of speech and depression, while the other

works propose approaches for detecting depression in differ-
ent signals. The approach in [10] performs such a task with
accuracy around 90% using Electro-Encephalograms (EEG).
Such a performance is similar to the one reported in [3],
where the accuracy is 88%, using a multimodal combination
of paralinguistics, head pose and gaze. Such a work follows
up on previous work based on head movements. The work
reports an accuracy higher than 70% achieved over a subset
of the Black Dog Corpus (30 control and 30 depressed) [4].
The approach proposed in [19] focuses on facial expressions
and shows that changes in the way these are displayed corre-
spond to the severity of depression. A last cue that has been
taken into account is body movement (including gestures)
that leads to an F1 measure of up to 80% in combination
with head pose and facial expressions [23].

Like this article, several works have addressed depression
detection or inference of self-assessment scores using speech
and, possibly, its transcription. In the experiments presented
in [21], the focus is on the use of mobile phones (characterised
by low quality and noisy audio) and the need to use short
utterances. The results show that an accuracy up to 72% can
be achieved in identifying people with PHQ-9 scores higher
than 9 (the depression threshold). The experiments in [13, 28]
focus on the paralinguistic differences between depressed
and non-depressed speakers. In [28], the experiments are
performed over adolescents because their voice is not fully
formed and, hence, it might not be as informative as in the
case of adults. The results show that the feature allowing one
to better discriminate between depressed speakers and the
others is the energy (related to how loud someone speaks),
especially when measured with the Teager Operator [36].
In the second work [13], the data show that non-depressed
individuals tend to display higher variability in their way
of speaking. The experiments presented in [33] show that it
is possible to detect depressed speakers using MFCC and
Recurrent Neural Networks.

Finally, several works have addressed the problem of com-
bining speech and its transcritpion like this work. The exper-
iments in [30] suggest that acoustic aspects, while being a
valuable source of information, should not be used without
taking into account transcritpions. In particular, the exper-
iments show that it is the joint modeling of acoustic and
linguistic aspects that leads to the best results. However,
the results presented in [42] appear to suggest that the best
F1 measure, even if by just one point (71% against 70%),
results from the use of the sole transcriptions. Similarly, other
experiments show that the joint modeling of paralinguistics
and lexical choice leads to lower F1 measures than the use
of lexical choice alone (69% against 67%). Still, the same
work shows that the use of gating mechanisms can improve
the performance of the combination (F1 measure 80%) [35].
The experiments in [1], based on joint modeling of speech
and manual transcriptions, shows that the performance can
be improved by taking into account when a sentence has
been uttered during an interview. In this case, a multimodal
approach based on speech and text leads to the best perfor-
mance (F1 measure 77%).



Overall, the state-of-the-art suggests that none of the be-
havioural cues considered so far (facial expressions, language,
gestures, etc.) clearly outperform the others. Furthermore,
the application of multimodal approaches does not necessarily
work, especially when considering linguistic and acoustic as-
pects of speech (see above). One possible explanation is that
depression interplays with so many different factors (physi-
ology, socio-economic status, age, gender, etc. [22]) that its
detectable traces change considerably from one person to the
other. As a solution, at least partial, this work includes the
collecion of data that are as balanced as possible in terms
of age, gender and education level (see Section 3). In this
way, it is possible to limit the effect of factors other than
depression.

3 DATA COLLECTION

The data used in the experiments of this work have been
collected in three Mental Health Centres in Southern Italy.
Table 1 provides information about gender, age and education
level of the 59 participants involved in the experiments. Fur-
thermore, the table shows that the participants can be split
into two groups, namely depression (29 persons diagnosed
with depression by professional psychiatrists) and control
(30 persons that have never experienced any mental health
issues).

The gender distribution is the same in both groups and,
overall, the number of female participants is 2.47 times higher
than the number of male ones. This reflects the tendency of
women to develop depression roughly twice as frequently as
men do [5]. In terms of age distribution, there is no difference
between the two groups (p << 0.01 according to a two-tailed
t-test) and the age range excludes children, adolescents and
people above 70 because these tend to manifest depression
less frequently [16, 25, 29]. For what concerns the education
level, a two-tailed x? test shows that the distribution is the
same for both groups (p < 0.05). The balance in terms of
gender, age and education level limits the possibility that
observable differences between the two groups result from
factors other than depression.

Every participant has been invited to participate in an
interview in which an experimenter has posed always the same
questions and always in the same order. The questions address
aspects of everyday life (e.g., activities during the last week
end) and the experimenters have limited their interventions
to the minimum. This aims at ensuring the collection of the
largest possible amount of spontaneous speech. As a result,
the participants speak, on average, 90% of the interview
time. However, there is a statistically significant difference
between depression and control participants that speak, on
average, 95.0% and 85.3% of the time, respectively (p << 0.01
according to a two-tailed ¢-test). The main probable reason is
that control participants tend to involve the interviewer in a
conversation, while depression ones answer the questions and
do not try to interact further. The discrimination between
depressed and non-depressed participants has been made by
professional psychiatrists.

Group F M Avg. Age Age Range L H
Depression 21 8 45.7 23-69 16 13
Control 21 9 44.0 23-68 12 18
Total 42 17 44.8 23-69 28 31

Table 1: The table provides demographic informa-
tion about the experiment participants. Acronyms F
and M stand for female and male, respectively, while
acronyms L and H stand for lower (up to 8 years of
study) and higher (at least 13 years of study) educa-
tion level, respectively.

On average, every interview lasts for 242.2 seconds, but
there is a statistically significant difference between the av-
erage durations for the two groups, corresponding to 216.5
and 267.1 seconds for depression and control participants,
respectively (p < 0.01 according to a one-tailed ¢-test). This
is not surprising because the literature provides evidence
that depressed individuals tend to engage less in social in-
teractions and, therefore, to speak less than people that are
not affected by the pathology [9, 17]. Every interview has
been segmented into clauses, atomic linguistic structures that
include a noun, a verb and a complement. These are mean-
ingful analysis units that make it possible to analyse how
the performance of a depression detection approach changes
when the amount of data about a person increases. Likely
because of the duration differences mentioned earlier, control
participants utter an average of 127.0 clauses, while depres-
sion ones utter 103.3. According to a one-tailed ¢-test, such
a difference is statistically significant (p < 0.01).

4 DEPRESSION DETECTION

Figure 1 shows the main components of the unimodal and
multimodal recognition approaches used in this work, namely
encoding, multimodal representation, classification and aggre-
gation. In both unimodal and multimodal cases, the input
corresponds to the N clauses {ci,ca,...,cn} that a given
participant has uttered (the value of N changes from one
participant to the other). Each clause ¢; is classified indi-
vidually resulting into N individual outcomes {[1, la, ..., fN},
where l}- is one of the two possible classes, i.e., depression
or control. The final classification outcome is obtained by
aggregating the l}-s though a majority vote. In other words,
a participant is assigned to the class her or his clauses are
most frequently assigned to. The rest of this section describes
encoding, multimodal representation and classification in de-
tail (the aggregation corresponds to the majority vote and
no further detail is provided).

4.1 Encoding

The encoding component includes two main steps, namely
feature extraction and unimodal representation. Since every
clause includes both an audio signal and its transcription,
two distinct feature sets are extracted, one from the audio
and the other from the text. In both cases, the result is a
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Figure 1: Left and right schemes show unimodal and multimodal recognition approach, respectively. In the
unimodal case (left scheme), every clause is encoded through a process that includes two main steps, namely
feature extraction and representation. The output of the encoding is fed to a softmax layer that provides
a classification outcome for each clause. The individual outcomes are then aggregated through a majority
vote. In the multimodal case, the output of the two encoding components (one per modality) are fed to a
multimodal representation step. This takes three different forms: concatenation and Logistic Regression that
performs a classification, concatenation and Feed Forward network, or Gated Multimodal Units. In the last
two cases, the output of the multimodal representation is fed to a softmax layer that performs a classification.
The final step is the aggregation of the individual clause classification outcomes.

sequence of feature vectors that are fed to a Bidirectional
Long Short-Term Memory network (Bi-LSTM ) [20] acting
as an encoder.

4.1.1 Audio Feature Extraction. The feature extraction pro-
cess segments the audio signal into 25 ms long analysis
windows that start at regular time steps of 10 ms (two con-
secutive windows overlap by 15 ms). The length of the win-
dows corresponds to the time-scale of acoustic phenomena in
speech. Therefore, it is expected to ensure that the the signal
properties remain relatively stable in the time intervals the
windows correspond to. After the segmentation, the signal
intervals enclosed in every window are mapped into feature
vectors where the components are the first F' = 39 Mel Fre-
quency Cepstral Coefficients (MFCC) [36]. Correspondingly,
each clause is converted into a sequence A = (a1, ag, ...,ar, ),
where ay is the F-dimensional vector extracted from the kth
window. The value of T4, the number of vectors allowed in A,
is set through cross-validation during the experiments. As a
result, every clause is mapped into a two-dimensional matrix
AR TaxF,

4.1.2 Text Feature Extraction. The clause transcriptions are
converted into sequences of vectors through Word Embed-
ding, an approach that has been shown to capture linguistic
and semantic characteristics of words, meaning that words
similar along such dimensions tend to be mapped into similar
vectors [11]. In particular, the transcription of every clause
is mapped into a sequence S = (s1, s, ..., STy ), where s is a
D-dimensional vector corresponding to the k" word and T

is the maximum number of vectors allowed in S. The value
of D has been set to 100 (no other values have been tried),
while the value of T's has been set through cross-validation
during the experiments. As a result, S is represented as as a
two-dimensional matrix S € RTs*P,

The Word Embedding approach used in the experiments
is static, i.e., it maps every word always into the same vector,
irrespectively of the different contexts in which it appears.
More recent approaches (e.g., the Bi-Directional Encoder Rep-
resentations from Transformers [15]) allow one to overcome
such a limitation, but they did not lead to any improvement
in the experiments of this work. The probable reason is that
clauses tend to be short (3.9 words on average) and, therefore,
the contextual information is insufficient for this particular
type of text. For this reason, the experiments of this work
make use of a static Word Embedding approach.

4.1.3 Unimodal Representation. After the feature extraction
process, the clauses are mapped into sequences of feature
vectors X = (x1,22,...,x7), where X corresponds to A or
S and T corresponds to T4 or Ts depending on wheter
the features have been extracted from the audio signal or
from its transcription (see Sections 4.1.1 and 4.1.2). The
main motivation is that the input data is sequential and, in
particular, audio vectors aj correspond to different points
in time of the speech signal, while vectors s correspond
to different words in a text. However, the vectors do not
carry sequential information, i.e., they do not encode possible
relationships between feature vectors extracted at different



points in time. For this reason, the X sequences are fed to
Bi-LSTMs [20], well known to capture such relationships, if
any.

4.2 Multimodal Representation

The multimodal combination approach builds upon the uni-
modal representations introduced in Section 4.1 and imple-
ments different strategies for the combination of lexical and
paralinguistic information extracted from the data. The main
reason for using a wide spectrum of approaches is to ensure
that the results of the experiments do not depend on a par-
ticular approach being used, but correspond to the actual
information in the data. The rest of this section presents
every multimodal combination approach in detail.

4.2.1 Late Fusion (LF). The classification of the unimodal
representations takes place by feeding the output of the
encoders to a softmax layer trained to minimize the cross-
entropy (see Section 4.3). The output of such a layer can
be thought of as the a-posteriori probabilities p(c|X) of
the classes. Based on the assumption that both modalities
used in this work are equally important and that the feature
vectors extracted from the different modalities are statistically
independent given the class, it is possible to apply the sum
rule, probably the most widely applied approach for the
late fusion of multiple classifiers, possibly corresponding to
multiple modalities [27]:

¢ = arg max{p(c|4) +p(c[S)}, (1)
where C is the set of all possible classes (depression and
control in the experiments of this work), while A and S

are the sequences extracted from the speech signal and its
transcription, respectively (see section 4.1).

4.2.2 Feature Fusion. Section 4.1.3 shows that the feature
vector sequences extracted from the speech signal and its tran-
scription are encoded through the use of unimodal Bi-LSTMs
that learn a representation capable to take into account re-
lationships between the vectors in the sequence, possibly
accounting for temporal patterns in the data. The two vec-
tors resulting from such a process are LL2-normalized and then
fused according to multiple strategies. The first, referred to
as Feed Forward Feature Fusion (FF-FF) in the following,
corresponds to concatenating the unimodal encondings and
feeding them to a feedforward network with four hidden lay-
ers (128, 64, 32 and 16 neurons, respectively). The expected
effect of the hidden layers is to embed the encodings in a
new, multimodal space more suitable for discriminating be-
tween depression and control paticipants. In a similar way,
the second fusion strategy, referred to as Logistic Regression
Feature Fusion (FF-LR) works by feeding the concatenation
of the unimodal encodings to a Logistic Regression function
trained to maximize the classification accuracy.

In both cases above, the assumption is that both modalities
are equally effective at discriminating between depressed and
control participants. However, this is not necessarily the case
and, therefore, the last feature fusion stragey makes use of a
Gated Multimodal Unit (GMU) and it is referred to as Feature

Fusion with Attention Gate FF-ATT, where the GMU is a
processing block that weights the different modalities through
a self-attention mechanism [6] If hq and hs are the encodings
of speech signal and its transcription, respectively, the fusion
is performed through a non-linear transformation that works
according to the following equations:

Zoq = tanh(Wghe) (2

zs = tanh(Ws.hs) (3

z=0(W;.[ha ® hs]) (4

h=z%xz,+ (1 —2)*xs, (5

where W,, W, and W, are learnable parameters and & is
the concatenation operator. The values of z and 1 — z can

be thought of as weights that account for the contribution of
the different modalities to the final classification outcome.

)
)
)
)

4.3 Classification

All representations, whether unimodal or multimodal, are
fed to a fully connected softmaz layer that implements the
following equation:

[ = o(Whr +b), (6)

where o is the softmax function, W is the weight matrix
and b is a bias vector. Both W and b are learned through
a training process aimed at the minimization of the cross-
entropy between groundtruth and classification outcome [12]:
1 < . .
LX)=—= [lnlogo(ln) + (1 —1n) log(l—o(ln))], (7)
n=1
where X is the training set, IV is the total number of samples
in X, l,, is the groundtruth of training sample n and In is
the classification outcome for the same sample. The training
takes place through back-propagation with the use of gradient
clipping to alleviate the exploding gradient problem [32].

5 EXPERIMENTS AND RESULTS

The goal of the experiments is to show whether it is possile
to detect depression with less than 10 seconds of speech
and, if yes, to what extent. For this reason, the rest of this
section shows the performance of the approaches presented
in Section 4 over the whole corpus at disposition and, as a
comparison, it shows how such a performance changes when
taking into account only the first clauses of an interview.

5.1 Hyperparameter Setting

The dataset has been split into 5 disjoint subsets through
a random process such that all clauses belonging to a given
subject are always in the same subset. In this way, it is
possible to apply a k-fold approach (kK = 5) and to per-
form participant-independent experiments, meaning that the
clauses belonging to a given participant never appear in both
training and test set. Every time a fold has been used as
a test set, the union of the remaining four has been split
into training set (90% of the material) and validation set
(10% of the material). This latter has been used to select the
value of the hyper-parameters via cross-validation. The space



Approach Level Accuracy (%) Precision (%) Recall (%) F1 (%) AUC (%)

Unimodal Text Clause 60.4 4+ 0.003 56.1 4+ 0.005 46.5 +0.007 51.0£0.005 59.0 4+ 0.003
Unimodal Text Participant 74.1 +0.023 100.0 £ 0.000 47.44+0.047 64.1 £0.045 73.7+0.023
Unimodal Audio Clause 70.0 4+ 0.006 65.1 4+ 0.008 65.0 £ 0.008 65.0£0.007 69.0 £ 0.006
Unimodal Audio Participant 73.0£0.021 76.0 £0.031 66.3 £0.031 71.0£0.024 73.04+0.021
Multimodal LF Clause 64.0 + 0.004 60.0 = 0.006 54.3 £ 0.008 57.0£0.005 63.0+0.004
Multimodal LF Participant 83.0 & 0.036 94.0 4+ 0.032 69.4 + 0.068 80.0 £0.049 83.0+0.036
Multimodal FF-FF Clause 64.0 + 0.004 59.3 + 0.006 55.2 4+ 0.008 57.2+0.005 62.7+0.004
Multimodal FF-FF Participant 83.0 & 0.027 93.1 +0.030 71.0£0.043 80.1 £0.034 83.0+£0.027
Multimodal FF-LR Clause 68.0 + 0.006 64.3 + 0.008 60.0 = 0.010 62.0£+0.008 67.0=+ 0.006
Multimodal FF-LR Participant 78.4 +0.021 85.0 4 0.029 68.3 +£0.033 76.0£0.025 78.240.021
Multimodal FF-ATT Clause 63.0 & 0.004 58.1 +0.005 54.5 4+ 0.010 56.2+0.007 62.0+0.004
Multimodal FF-ATT Participant 83.5 +0.031 95.0 4 0.025 70.3 £ 0.058 80.5 £0.042 &83.2+0.031

Table 2: The table is shown the performance of unimodal and multimodal approaches used in the experi-
ments, at both claus and participant level. The values are reported in terms of the averages obtained over 30
repetitions of the experiments and their standard errors.

of the hyperparameters (initial learning rate oo, number of
training epochs 7', batch size B , number of hidden neurons
for Bi-LSTM U and maximum length of an input sequence L)
was searched through Gaussian Process Optimization. The
models were trained using the Adam optimizer [26].

For the unimodal approaches, according to a practice com-
mon in the literature, the initial learning rate has been pro-
gressively reduced over successive training epochs using the
expression a = apB%/° where 8=0.96 is the decay rate, ¢
is the step and § = 500 is the number of decay steps. In
the case of the text model, the highest validation accuracy
was obtained for ap = 0.003, T'= 80, B = 64, U = 128 and
L = 10. For the Word Embedding, the experiments have
made use of itwiki, the pre-trained Italian Wikipedia2Vec
model, which is based on a 100-dimensional embedding space.
In the case of the audio model, the hyperparameter values
leading to the highest validation accuracy were ag = 0.001,
T =80, B=32,U =128 and L = 40.

For the multimodal approaches (FF-FF and FF-ATT), the
hyperparameter values maximizing the validation accuracy
are g = 0.003 and B = 128. For FF-FF, the number of
neurons in the 4 layers of the network is 128, 64, 32 and
16 (te values have been set a-priori and not through cross-
validation). For FF-ATT, the size of the hidden layer in the
gate is 27.

5.2 Recognition Results

Table 2 shows the performance of the approaches presented
in Section 4. Since the training process starts with a random
initialization of the parameters, every experiment has been
replicated 30 times and Table 2 includes average and Standard
Error (SE) across the 30 repetitions. The small SE values
suggest that the variance is low and, hence, the models are
robust to changes in the initial parameter values. Therefore,
the average values can be considered realistic estimates of
the actual performance of the approaches. According to a

binomial test, all performances are better than chance to a
statistically significant extent (p < 0.001 in all cases).

When it comes to unimodal approaches, the audio-based
classifier performs better than the text-based one at the clause
level and, according to a two-tailed t-test, the difference is
significant (p < 0.05). However, from an application point of
view, the most important metrics are those at the participant
level and, in this case, the difference between audio and text
is not statistically significant. At the clause level, multimodal
approaches perform roughly like unimodal ones, but when
it comes to participant level, the difference with respect to
the best unimodal approach is always statistically significant
(p < 0.05 according to a binomial test) except in the case
of FF-LR. One possible explanation is that the unimodal
encoders (see Section 4) capture temporal patterns in their
respective input data, but represent them in a space where
the difference between depression and control participants
does not emerge with sufficient clarity. In this respect, the
multi-layer network used in FF-FF to embed the unimodal
encodings in a space where there is more difference between
depression and control participants appears to lead to higher
person level accuracy. FF-ATT does not make use of the four
layers network, but it still achieves the same person level
accuracy as FF-FF. In this case, the probable explanation is
that the GMU effectively identifies the modality more likely
to carry information leading to the correct classification.

5.3 Recognition and Number of Clauses

The last section shows that the application of the majority
vote allows one to achieve high participant level accuracy,
especially when it comes to multimodal approaches. The
main probable reason behind such a result is that the average
number of clauses per participant is greater than 100 for both
depression and control participants (see Section 1). Therefore,
a limited accuracy at the clause level is sufficient to increase
the probability of at least half of the clauses being classified
correctly, the condition for a participant being assigned to
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Figure 2: The plots show the expected accuracy of
unimodal approaches and FF when using only a lim-
ited number of clauses. The expected accuracy is
based on Equation (8) and it is based on the as-
sumption that correctly classified clauses distribute
uniformly across speakers.

the right class. In fact, such a probability can be estimated
as follows (based on the assumption that the clause level
accuracy is the same for all participants):

pe = f: < A,f )pk(l—p)M_kv (8)

k=M/2+1
where M is the average number of clauses per participant
and p is the clause level accuracy. Figure 2 shows that such a
probability increases significantly with the number of clauses
and, therefore, the greater the number of these latter, the
higher the expected participant level accuracy.

One of the main consequences of the considerations above is
that it takes a substantial amount of time before the number
of clauses is sufficiently large to ensure high performance. This
is a problem for at least two reasons, namely the tendency of
depressed people to speak less than the others (see Section 3)
and the need to shorten the interviews in order to lower the
costs associated to depression diagnosis. For this reason, this
section investigates the relationship between performance
and number of clauses. In particular, the analysis focuses on
the two unimodal approaches and on FF-FF, the approach
with the highest participant level recall.

Figure 3 shows how accuracy, precision and recall change as
a function of the number of clauses used to make a participant
level decision. The reason for taking into account only odd
numbers is that this makes it possible to apply the majority
vote without the risk of a tie. In terms of unimodal approaches,
the plot shows that the accuracies of both audio and text
unimodal approaches after one clause are within a statistical
fluctuation with respect to the accuracies obtained while using

the whole corpus. However, there are statistically significant
differences for precision and recall. For both modalities, after
the first clause, the precision is lower, but the recall is higher.
For what concerns FF-FF, the pattern is similar, with the
recall that has a small decrease (from 71.0% to 69.5%).

As the number of clauses increases, the pattern remains
roughly the same for both unimodal and multimodal ap-
proaches. Therefore, the recall seems to improve or remain
stable (in the case of FF-FF) when considering a limited
amount of material. In this respect, using a limited number
of clauses appears to ensure that more depression patients
are recognised as such. Even if this comes at the cost of more
control participants being classified as depressed, such a re-
sult can be considered positive because the consequences of
type II errors (classifying a depression patient as control) are
significantly more negative than those of type I ones (control
participants classified as depression patients).

The effectiveness of the approaches after the first few
clauses, especially in terms of recall, can lead to the inter-
pretation that the depression patients tend to manifest their
condition more clearly at the very beginning of the interview.
Similarly, it can be argued that the results stem from the
particular questions asked at the beginning of the interaction.
For this reason, the same experiment has been conducted
after shuffling the order of the clauses (see plots in the right
column of Figure 3). It can be seen that the pattern is similar
and this suggests that the clause order is not important. Fur-
thermore, it confirms that using a limited amount of material
appears to lead to the same recall level as when using the
whole interview. Given that the average length of a clause is
1.2 seconds, the results above mean that such a time is suffi-
cient to identify as many depression patients as those that
get detected when using the whole material at disposition.
In other words, it is possible to perform depression detection
with less than 10 seconds without significant performance
losses, especially when it comes to recall.

One possible explanation of the results above is that depres-
sion patients tend to manifest so consistently their condition,
that there is high probability of correctly classifying any
clause they utter. Not surprisingly, the clause level accuracy
is well above chance for all approaches considered in the ex-
periments. Such a result is in line with previous observations
showing that limited amount of audio, possibly captured in
naturalistic settings like the one of the experiments in this
work, is sufficient to perform depression detection, especially
when the approach is based on paralanguage [21]. On the
other hand, the results of this work seem to contradict the
finding in [1] that depression detection can improve by tak-
ing into account when a given sentence is uttered during a
conversation.

6 CONCLUSIONS

This article has presented experiments aimed at showing
whether it is possible to detect depression in less than 10
seconds and, if yes, how effectively. The experiments have
been performed over a corpus of 59 clinical interviews and the
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Figure 3: The plots show accuracy, precision and recall as a function of the number of clauses. The left column
shows the results when the clauses are added in the same order as they appear in the interviews, while the
right column shows the sam results when the clauses are added in random order.

results show that a few clauses - acatually accounting for less
than 10 seconds - are sufficient to achieve a recall comparable
(if not better) to the one obtained using the whole data at
disposition. Furthermore, the results show that such a result
can be observed whether the clauses are recognised in the
order as they appear in the interviews or in a random order.
This suggests that the observed results do not depend on the
protocol applied at the beginning of the interviews, but on
the amount of data.

The experiments have been performed using a wide spec-
trum of approaches aimed at the fusion of multiple modalities,
including the combination of unimodal classifiers through
the sum rule [27], one of the most traditional approaches for
the combination of multiple classifiers, and network based
approaches for the joint representation of multiple modali-
ties [7], one of the most recent trends in multimodal behaviour
analysis. Overall, multimodal approaches clearly outperform
multimodal ones when using the whole corpus at disposition.
However, this applies only to the participant level, after the
application of the majority vote. When it comes to clause
level accuracy, the performances of unimodal and multimodal
approaches are actually closer and this probably explains
why there are no major differences when taking into acccount
one or a few clauses.

Fast depression detection addresses several issues in clinical
practice. The first is the tendency of depressed individuals to
avoid social interactions and to speak less than non-depressed
people [9, 17]. The possibility to detect depression with lim-
ited material can help to deal with such a tendency and to
obtain good results for people that cannot sustain an in-
terview like those used in this work. The second is to spot
actually depressed people among the many individuals that

call counseling services because they are momentaneously in
distress, but are not affected by a pathology. In this respect,
approaches like those presented in this work can help to
quickly dispatch callers among operators more or less quali-
fied to deal with depressed individuals. Future work will focus
on possible differences between depressed and non-depressed
speakers in the modalities through which one’s condition is
manifested.
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