Stacked Recurrent Neural Networks for Speech-Based
Inference of Attachment Condition in School Age Children

Huda Alsofyani and Alessandro Vinciarelli

University of Glasgow (UK)

firtsname.lastname@glasgow.ac.uk

Abstract

In Attachment Theory, children that have a positive perception
of their parents are said to be secure, while the others are said to
be insecure. Once adult, unless identified and supported early
enough, insecure children have higher chances to experience
major issues (e.g., suicidal tendencies and antisocial behavior).
For this reason, this article proposes a speech-based automatic
approach for the recognition of attachment in school-age chil-
dren. The experiments are based on stacked RNNs and have
involved 104 children of age between 5 and 9. The accuracy
is up to 68.9% (F1 59.6%), meaning that the approach makes
the right decision two times out of three, on average. To the
best of our knowledge, this is the first work aimed at inferring
attachment from speech in school-age children.

Index Terms: Computational paralinguistics, attachment, child
speech, Social Signal Processing.

1. Introduction

According to John Bowlby, originator of the Attachment The-
ory, “to know that an attachment figure is available and respon-
sive gives [children] a strong and pervasive feeling of secu-
rity” [1]. Therefore, attachment can be thought of as a psycho-
logical construct that accounts for whether “the infant’s search
for consistent care is met with either success, leading to a sense
of emotional security, or failure, with insecurity as a result” [2].
Correspondingly, the attachment condition of a child is said to
be secure or insecure depending on whether children perceive
their attachment figures, typically the parents, in positive or neg-
ative terms, respectively [3].

The main reason why the attachment condition is impor-
tant is that insecure attachment, if not properly addressed dur-
ing childhood, can have negative consequences in adult life.
For example, insecure children are more likely to display an-
tisocial behavior [4] or to develop coronary pathologies [5, 6]
once they become adult. Furthermore, attachment shapes be-
liefs and expectations about relationships in general [7]. As a
consequence, insecure individuals tend to be less satisfied with
their social life, marriage or professional career because they
tend to perceive more negatively friends, romantic partners or
colleagues, respectively [2]. For these reasons, this article pro-
poses a speech-based automatic approach for attachment recog-
nition in children of age between 5 and 9.

The proposed approach applies methodologies typical of
Social Signal Processing [8] and Computational Paralinguis-
tics [9]. In particular, the approach recognizes whether chil-
dren are secure or insecure by analyzing nonverbal aspects of
speech. The approach starts by converting input speech sig-
nals into sequences of feature vectors extracted at regular time
steps. It then feeds such sequences to stacked Recurrent Neu-
ral Networks (RNN) [10] trained to distinguish between secure
and insecure child speakers. The main reason for focusing on

nonverbal aspects is that they were shown to convey reliable in-
formation about social and psychological phenomena such as,
e.g., emotions [11] and personality traits [12].

The experiments have involved 104 participants (59 secure
and 45 insecure) undergoing the Manchester Child Attachment
Story Task (MCAST) [13], one of the tests child psychiatrists
apply most commonly in clinical practice. During such a test,
children are recorded while telling stories about everyday inter-
actions between two fictitious characters, a mother and her child
(see Section 2 for more details). According to the theory under-
lying the MCAST, children manifest their attachment condition
through the way they tell such stories, a scenario that naturally
lends itself to the application of the approach described above.
The total duration of the recordings is 7 hours, 1 minute and
24 seconds, corresponding to an average of 240.8 seconds per
child. The results show that the attachment recognition accu-
racy is 68.9% (F1 59.6%), meaning that the approach makes
the right decision roughly two times out of three.

To the best of our knowledge, this is the first attempt to
automatically infer the attachment condition of children from
speech. Experiments similar to those presented in this work
were shown in [14], but the focus was on the way children move
dolls representing the characters at the core of the MCAST
(the results are similar to those obtained in this article). An
automatic version of the Biometric Attachment Test was prop-
posed in [15], but it was designed for adults and not for chil-
dren. Such a work focuses on physiological measurements
(photoplethysmography), face behaviour, paralinguistics and
language to predict attachment self-assessment scores (the best
Root Mean Square Error is 12.1). Other computing works re-
volving around attachment target the development of digital ar-
tifacts capable to establish long-term relationships with their
users [16, 17]. Similarly, the role of attachment in child-robot
interaction was explored in [18, 19, 20], with a particular focus
on social robots designed to interact with their users like hu-
mans. Finally, other works aim at designing technologies that
support positive attachment relationships between children and
caregivers [21, 22, 23].

The rest of this article is organized as follows: Section 2
provides information about the MCAST and the data collected
for the experiments, Section 3 describes the attachment recog-
nition approach, Section 4 reports on experiments and results,
and the final Section 5 draws some conclusions.

2. Attachment Assessment and Data

The Manchester Child Attachment Story Task (MCAST) [13]
is one of the instruments that experts use most commonly to as-
sess the attachment condition of a child. The test is based on five
story stems about the interaction between a child and a mother
in everyday life: Breakfast (the child wakes up in the morning
and the mother prepares breakfast), Nightmare (the child wakes



Figure 1: The picture shows the School Attachment Monitor and
how it appears to the children. The computer screen (element 1
in the picture) displays the videos where actors guide the chil-
dren through the steps of the MCAST, the button (element 2 in
the picture) allows the users to signal that they have completed
an MCAST step, the dolls (elements 3 and 4) and the toy house
(see element 5) allow the users to complete the story stems.

up after a nightmare and calls the mother for comfort), Hop-
scotch (the child gets a wound on her knee and asks the mother
to provide first aid), Tummyache (the child feels a pain in the
stomach and asks the mother to provide assistance) and Shop-
ping (the child looses contact with the mother in a shopping
mall and tries to re-establish contact with her). After listening
to each stem, the participants have to tell how the story contin-
ues with the help of two dolls, one that corresponds to the child
of the story and the other that corresponds to her mother. The
key-assumption underlying the MCAST is that participants in
different attachment conditions will tell the stories in a different
way. For this reason, it is common clinical practice to record
the children undergoing the MCAST so that psychiatrists can
analyze the way they tell the stories in full detail.

Figure 1 shows the main elements of the School Attachment
Monitor (SAM), the system used for the collection of the data
in the experiments. The MCAST administration takes place ac-
cording to the following protocol:

e Story stem delivery: the SAM plays a video in which
an actor delivers a story stem and then prompts the par-
ticipant to represent its continuation with the dolls (see
element 1 of the SAM in Figure 1);

* Story representation: the participant represents the con-
tinuation of the story stem with the help of dolls (see
elements 3 and 4 in Figure 1) and play mat (element 5 in
Figure 1) while being recorded by the camera of the sys-
tem and, at the conclusion, presses the “Finish” button
(element 2 in Figure 1);

e [teration: the system goes back to the first step to deliver
another story stem (if the fifth story stem has not been
reached) or concludes the test (if the fifth story stem has
been reached).

The SAM records the whole administration of the MCAST, but
the experiments have been performed only over the segments
in which the children actually tell the stories. The reason is
that, according to the theory underlying the test, this is when
the participants manifest their attachment condition [13].

[ Level | PL(56) | P2(6) | P3(7-8) | P4(39) |

Female 9 22 15 11
Male 10 18 14 5
Secure 9 22 18 10
Insecure 10 18 11 6

[ Total [ 19 [ 40 [ 29 [ 16 ]

Table 1: The table shows the distribution of gender and attach-
ment condition across the primary school levels, Primary 1 (P1)
to Primary 4 (P4). For every level, the header shows the corre-
sponding age-range between parentheses.

The experiments have involved 104 children randomly re-
cruited in the primary schools of Glasgow, UK (Table 1 shows
their distribution across school levels, gender and attachment
conditions). The total number of female and male participants is
57 (55.2% of the total) and 48 (44.8% of the total), respectively.
The attachment assessment has been performed by a pool of 4
raters that have attended the professional course delivered by
the psychiatrists that have elaborated the test [24]. Every child
of the corpus has been assessed by two independent raters and,
in case of disagreement (less than 10% of the cases), a third rater
has been asked to perform an independent assessment aimed at
breaking the tie. Such a protocol replicates the practices of the
clinicians that have led the collection of the data [14].

According to a x-square test with confidence level 99%,
the corpus distribution over attachment conditions (55.8% of
secure and 44.2% of insecure) is within a statistical fluctuation
with respect to the distribution observed in the rest of the popu-
lation [25, 26]. The total length of the resulting recordings col-
lected in the experiments is 7 hours, 1 minute and 24 seconds,
corresponding to an average of 240.8 seconds per child. The
collection of the data was performed after having received the
ethical clearance of the School Authority in Glasgow. Children
were involved only upon written authorization of their parents
and they were free to interrupt the test at any moment.

3. The Approach

The proposed approach includes three main steps, namely fea-
ture extraction, attachment recognition and aggregation. The
first step converts the input recordings into sequences of feature
vectors, the second assigns such sequences to class secure or in-
secure, and the third aggregates the classifications made at the
level of individual story stems.

The feature extraction step is performed with OpenS-
mile [27, 28] over 33 ms long non-overlapping analysis win-
dows. The feature set includes 16 basic features and their re-
spective delta regression coefficients for a total of 32 features.
The basic features are Root mean square of the energy (1 fea-
ture), Mel Frequency Cepstral Coefficients (12 features), Zero
Crossing Rate (1 feature), Voicing probability (1 feature) and
Fundamental frequency (1 feature). The main motivation be-
hind this choice is that the features above were shown to be
effective in emotion recognition [29] and are commonly used
in the literature to infer social and psychological phenomena
from speech. The feature values are smoothed by averaging
over three consecutive analysis windows.

For a recording corresponding to an individual story stem,
the result of the feature extraction process is a sequence of fea-
ture vectors X = (@1,...,2r). The goal of the attachment
recognition step is to assign X to one of the two possible classes
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Figure 2: The figure shows the information flow through the
stacked RNNs during the recognition process. The rectangu-
lar blocks correspond to hyperbolic tangent layers, while the
square block is a softmax layer. Vectors h; and h, are the hid-
den states of the RNNs, while the x.s are the feature vectors
extracted from the speech recordings.
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(secure or insecure). Given the sequential nature of the data,
Recurrent Neural Networks (RNN) [30] appear to be a suitable
model for recognition. In particular, the experiments were per-
formed using two stacked RNNs [10], meaning that the hidden
states of the first RNN were fed to the second as input (see Fig-
ure 2). The main expectation behind such an architecture is that
hidden state sequences of higher networks in the stack tend to
account for increasingly higher levels of abstraction.

Training the model of Figure 2 over long sequences gives
rise to issues such as vanishing and exploding gradients [31].
Therefore, the input recordings were split into non-overlapping
segments that correspond to L = 128 vectors each (accounting
for 4.25 seconds of speech). Such a length is a tradeoft that
has been shown to be sufficient to capture temporal information
while avoiding training issues. The classification outcome cor-
responds to the output y of the final softmax layer when all L
vectors of a segment have been fed to the stacked RNNs (see
Figure 2). The value of y is an estimate of the probability that
sequence X belongs to class insecure. When such a probability
is above 0.5, the segment is assigned to class insecure, other-
wise it is assigned to class secure.

Every speech recording includes M segments that are indi-
vidually assigned to one of the two possible classes (see above).
Correspondingly, a recording can be classified through a major-
ity vote, i.e., it can be assigned to the class ¢ that satisfies the
following equation: & = arg maxce{c,,c,} f(c), where f(c) is
the fraction of segments assigned to class c in the recording.

Section 2 shows that the MCAST includes five story stems
and, therefore, there are five recordings per child. Each of these
is classified with the approach presented above and, as a result,
there are five classification outcomes per child. The goal of the
aggregation step is to combine the decisions made at the level
of individual story stems to perform a classification at the level
of a child. Such a step can be performed in two ways. The first,
referred to as Story Majority Vote, is to assign the child to the
class her or his stories are more frequently assigned to. The sec-
ond is to consider the story recordings assigned to a particular
class ¢ and to calculate the average value of the fraction f(c)
(see above) over them. This will result into two averages E(c1)
and E(cz) extracted from the story recordings assigned to ci
and cp for a given child, respectively. The classification can
then be performed as follows: ¢* = argmaxXce(c,,c,} £(¢),
where ¢ is the class the child is assgned to. Such an aggrega-
tion approach is referred to as Weighted Average.

4. Experiments and Results

The experiments were performed according to a k-fold proto-
col (k = 10). The folds were obtained by randomly assigning

Story [ Acc. (%) [ Pre. (%) [ Rec. (%) | F1(%) |
Breakfast 65.842.7 | 63.94+4.1 | 47.348.0 | 54.0+59
Nightmare 61.04+3.6 | 56.7+59 | 41.846.4 | 47.945.6
Tummyache | 60.1£4.5 | 54.5£6.3 | 46.9+£6.8 | 50.3+6.0

Hopscotch 642444 | 60.3£6.4 | 47.34+82 | 52.7£7.1
Shop. Mall 65.31+2.6 | 62.6£5.1 | 48.54+5.0 | 54.4+£33
All (SMV) 66.7£2.0 | 65.2£2.7 | 49.3+4.9 | 56.0+3.9
All (WA) 68.9+2.0 | 67.842.4 | 53.3+£5.0 | 59.64+3.8

[ Random [ 510 [ 430 [ 430 [ 430 |

Table 2: This table shows the performance of the proposed ap-
proach in terms of Accuracy (Acc.), Precision (Pre.), Recall
(Rec.) and F1 score (F1). The performance metrics are re-
ported in terms of average and standard deviation over 10 rep-
etitions (at every repetition, the RNNs have been initialized dif-
ferently). The acronyms SMV and WA stand for Story Major-
ity Vote and Weighted Average. The Random classifier assigns
samples to classes according to a-priori probabilities.

the data of every child to one of the folds. Given that the same
child was never represented in more than one fold, the proto-
col is person-independent, meaning that the same child is never
represented in both training and test set. This ensures that the
proposed approach actually recognizes attachment and not chil-
dren. Section 3 shows that the length of the input sequences was
set to L = 128 (no cross-validation was performed to find po-
tentially better values). Similarly, other parameters were set to
values that are standard in the literature, namely the dimension
D = 70 of the hidden states, the learning rate equal to 102 and
the number of training epochs 7' = 50. To reduce the risk of
overfitting, L2 regularization was applied to both recurrent and
kernel weights of the RNN layers with parameter A = 107 2.
The training was performed with a mini-batch strategy to limit
computational issues [32]. This means that the RNNs were
trained over subsets of the training set (the mini-batches), each
including B = 512 training sequences. The mini-batches were
disjoint, but their union corresponded to the whole training set.
Every recognition experiment was performed R = 10 times
and, at every repetition, the RNNs were initialized randomly.
All results are presented in terms of average and standard devi-
ation over the R repetitions.

A different model was trained for each of the five individual
story stems, thus resulting into five different models (e.g., the
“Breakfast model” was obtained by training the stacked RNNs
over the recordings corresponding to the Breakfast story stem).
In such a way, the individual models can be used as an ensem-
ble of classifiers [33] and this is an advantage because different
stories are likely to elicit attachment relevant behaviors to a dif-
ferent extent. For these reasons, Table 2 shows the results both
for the individual story stems and for the aggregation performed
through Story Majority Vote or Weighted Average (see end of
Section 3). The baseline for comparison is a random classifier
that assigns a sample to class ¢ with probability p;, where p; is
the a-priori probability of class 7. According to a single-tailed
t-test, the difference with respect to such a random classifier is
always statistically significant for Accuracy, Precision and F1
Score (p < 0.01 in all cases). In the case of Recall, the differ-
ence is statistically significant only for Story Majority Vote and
Weighted Average.

The low standard deviations suggest that there is no inter-
play between results and RNNs’ initialization. In the case of
Recall the standard deviations are higher, but such a perfor-



[ Level [ Acc. (%) [ Pre.(%) [ Rec. (%) | FI(%) |

P1 63.7+£7.0 | 67.6+6.7 | 58.5+12.3 | 62.3£9.7
P2 724+4.0 | 76.4+3.8 55.6+8.4 | 64.1+6.8
P3 69.7+3.3 | 64.8+6.7 44.5+5.8 | 52.6+5.4
P4 65.0+7.7 | 542£11.2 | 542492 | 53.84£9.2

Table 3: The table shows the performance at level Primary 1
(P1) to Primary 4 (P4). See Table 2 for the metrics.

mance metric takes into account only the 45 insecure children
and, therefore, its value fluctuates more. According to a two-
tailed t-test, the difference between highest accuracy (65.8%
for Breakfast) and bottom two accuracies (61.0% and 60.1%
and 63.0% for Nightmare and Tummyache, respectively) is sta-
tistically significant (p < 0.01 in both cases). This seems to
confirm that some of the story stems are more likely to elicit
detectable attachment-related behaviours.

In the case of Recall, there is a statistically significant dif-
ference (p < 0.01 according to a single tailed ¢-test) between
top and bottom values (48.5% and 41.8% for Shopping Mall and
Nightmare, respectively), but not between the others. Recall
plays an important role in clinical applications because it ac-
counts for type I errors (insecure participants erroneously classi-
fied as secure), those that have the most negative consequences
because children that need medical attention do not receive it.
One possible explanation behind the result above is that inse-
cure children tend to react more uniformly to the different sto-
ries and, therefore, there are no major differences in terms of
insecure detection.

The Story Majority Vote does not improve over the best ac-
curacy for an individual story stem (according to a two-tailed
t-test). Such a result suggests that the classifiers trained over
individual story stems are not diverse, i.e., they do not tend to
make different mistakes over different children [34]. However,
the Weighted Average improves over the best accuracy for an
individual stem (p < 0.01 according to a two-tailed ¢-test) and
this suggests that the classifiers trained over individual stories,
when assigning the majority of the speech segments to the right
class, tend to do it to a greater extent. In other words, the frac-
tion f(c) of segments assigned to class ¢ (see end of Section 3)
tends to be higher when c is the right class.

Table 1 shows the distribution of the experiment partici-
pants across the four primary school levels in Scotland (where
the data were collected), from P1 (Primary 1) to P4 (Primary
4). For this reason, Table 3 presents the results obtained through
Weighted Average for children at different school levels. Ac-
cording to a single-tailed t-test, there is no statistically signif-
icant difference between the accuracies observed over children
of levels P2 and P3. However, the difference is statistically sig-
nificant between such children and the others (p < 0.05 accord-
ing to a single-tailed ¢-test). Therefore, the proposed approach
seems to work better for children at levels P2 and P3. In partic-
ular, when taking into account only children of such levels, the
accuracy is 71.1%, the Precision is 71.4%, the Recall is 50.8%
and the F1 score is 59.2%. One possible explanation is that
such levels account for roughly 66% of the participants (69 out
of 104) and, therefore, they correspond to a similar fraction of
the training material. In other words, the availability of more
children in levels P2 and P3 results into models that are more
effective for such levels.

In the case of Recall, the situation is different and, in partic-
ular, the only value that is lower than the others to a statistically

significant extent is observed for P3 (p < 0.05 according to
a single-tailed ¢-test in all cases). This suggests that, in terms
of Recall the proposed approach seems to be equally effective
across 3 of the 4 levels. Furthermore, it should be considered
that Recall takes into account only insecure children (45 out of
104 children) and, therefore, the lower performance of P3 might
depend on a fluctuation due to the limited number of children
at such a level (11 out of the 45 insecure). This is important
because it means that it is possible to identify insecure children
with roughly the same level of performance across at least 3
school levels.

5. Conclusions

To the best of our knowledge, this work proposes the first
speech-based approach for attachment recognition in children.
The results show that it is possible to achieve an accuracy of up
to0 68.9%, corresponding to an F1 score of 59.6%. The main mo-
tivation behind the work is that, according to the guidelines of
the UK National Collaborating Centre for Mental Health, “at-
tachment difficulties [...] place a considerable financial bur-
den on health, social services, criminal justice and society as
a whole” [35]. Therefore, it is necessary to “develop reliable
and valid screening assessment tools for attachment [...] that
can be made available and used in routine health and social
care” [35]. In particular, automatic approaches for attachment
assessment can allow large-scale screenings of the population
that, at the moment, are not possible because traditional, non-
automatic assessment tests are too time-consuming.

According to the observations of child psychiatry, “/...] the
younger the subject the more likely are his behaviour and his
mental state to be the two sides of a single coin” [36]. For
this reason, the proposed approach is based on methodologies
typical of Social Signal Processing and Computational Paralin-
guistics, two computing domains focusing on the analysis of
nonverbal behaviour. Overall, the results appear to confirm that
attachment, like any other social and psychological phenomena,
leaves traces in terms of honest nonverbal behavioural cues, i.e.,
cues that convey reliable information about the actual inner state
of an individual [8].

One of the main characteristics of the proposed approach is
the aggregation of decisions made at the level of individual story
stems. The reason is that, according to the theory underlying the
MCAST, different stems elicit attachment-relevant reactions to
a different extent in different children. In this respect, the use
of five stems aims at ensuring that, at least for one stem, every
child manifests her or his condition with sufficient evidence. In
order to increase the diversity across models trained over indi-
vidual stems, future work will focus on the inclusion of different
modalities, i.e., of different behavioural channels through which
attachment can be expressed (e.g., facial expressions, language
or gestures). The main motivation is that new modalities can in-
ject diversity, i.e., the tendency to make different mistakes over
different children. This is the main property that can help an
ensemble of classifiers to improve its performance [34].

6. Acknowledgements

This work was supported by UK Research and Innovation and
Engineering and Physical Sciences Research Council through
the projects “Socially Competent Robots” (EP/N035305/1),
“School Attachment Monitor” (EP/M025055/1) and “UKRI
Centre for Doctoral Training in Socially Intelligent Artificial
Agents” (EP/S02266X/1).



[1]
[2]
[3]

[4]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

7. References

J. Bowlby, A secure base. Basic Books, 1988.
P. Lovenheim, The Attachment Effect. Tarcher Perigee, 2018.

D. Wilkins, D. Shemmings, and Y. Shemmings, Attachment. Pal-
grave, 2015.

P. Wilson, P. Bradshaw, S. Tipping, G. Der, and H. Minnis, “What
predicts persistent early conduct problems? Evidence from the
growing up in Scotland cohort,” Journal of Epidemiology and
Community Health, vol. 67, pp. 76-80, 2013.

M. Dong, W. Giles, V. Felitti, S. Dube, J. Williams, D. Chapman,
and R. Anda, “Insights into causal pathways for ischemic heart
disease: adverse childhood experiences study,” Circulation, vol.
110, no. 13, pp. 1761-1766, 2004.

C. Packard, V. Bezlyak, J. McLean, G. Batty, I. Ford, H. Burns,
J. Cavanagh, K. Deans, M. Henderson, and A. McGinty, “Early
life socioeconomic adversity is associated in adult life with
chronic inflammation, carotid atherosclerosis, poorer lung func-
tion and decreased cognitive performance: a cross-sectional,
population-based study,” BMC Public Health, vol. 11, no. 1, p. 42,
2011.

N. Collins and L. Allard, “Cognitive representations of attach-
ment: The content and function of working models,” in Black-
well Handbook of Social Psychology: Interpersonal Processes,
G. Fletcher and M. Clark, Eds. Wiley Online Library, 2001, pp.
60-85.

A. Vinciarelli, M. Pantic, and H. Bourlard, “Social Signal Pro-
cessing: Survey of an emerging domain,” Image and Vision Com-
puting, vol. 27, no. 12, pp. 1743-1759, 2009.

B. Schuller and A. Batliner, Computational paralinguistics: emo-
tion, affect and personality in speech and language processing.
John Wiley & Sons, 2014.

R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How
to construct deep recurrent neural networks,” arXiv preprint
arXiv:1312.6026, 2013.

M. Akgay and K. Oguz, “Speech emotion recognition: Emotional
models, databases, features, preprocessing methods, supporting
modalities, and classifiers,” Speech Communication, vol. 116, pp.
56-76, 2020.

A. Vinciarelli and G. Mohammadi, “A survey of personality com-
puting,” IEEE Transactions on Affective Computing, vol. 5, no. 3,
pp. 273-291, 2014.

J. Green, C. Stanley, V. Smith, and R. Goldwyn, “A new method of
evaluating attachment representations in young school-age chil-
dren: The Manchester Child Attachment Story Task,” Attachment
& Human Development, vol. 2, no. 1, pp. 48-70, 2000.

G. Roffo, D.-B. Vo, M. Tayarani, M. Rooksby, A. Sorrentino,
S. Di Folco, H. Minnis, S. Brewster, and A. Vinciarelli, “Au-
tomating the administration and analysis of psychiatric tests: The
case of attachment in school age children,” in Proceedings of CHI,
2019.

F. Parra, S. Scherer, Y. Benezeth, P. Tsvetanova, and S. Tereno,
“Development and cross-cultural evaluation of a scoring algo-
rithm for the biometric attachment test: Overcoming the chal-
lenges of multimodal fusion with” small data”,” IEEE Transac-
tions on Affective Computing (to appear), 2021.

A. Meschtscherjakov, “Mobile attachment: Emotional attachment
towards mobile devices and services,” in Proceedings of the ACM
International Conference on Human-Computer Interaction with
Mobile Devices and Services, 2009, pp. 102:1-102:1.

A. Meschtscherjakov, D. Wilfinger, and M. Tscheligi, “Mobile
attachment causes and consequences for emotional bonding with
mobile phones,” in Proceedings of CHI, 2014, pp. 2317-2326.

H. Ishihara, Y. Yoshikawa, and M. Asada, “Realistic child robot
“affetto” for understanding the caregiver-child attachment rela-

tionship that guides the child development,” in Proceedings of

the IEEE International Conference on Development and Learn-
ing, vol. 2, 2011, pp. 1-5.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

D. Herath, C. Kroos, C. Stevens, and D. Burnham, “Adopt-a-
robot: A story of attachment,” in Proceedings of the ACM/IEEE
International Conference on Human-Robot Interaction, 2013, pp.
135-136.

A. Hiolle, K. Bard, and L. Canamero, “Assessing human reac-
tions to different robot attachment profiles,” in Proceedings of the
IEEE International Symposium on Robot and Human Interactive
Communication, 2009, pp. 251-256.

N. Freed, J. Qi, A. Setapen, C. Breazeal, L. Buechley, and H. Raf-
fle, “Sticking together: Handcrafting personalized communica-
tion interfaces,” in Proceedings of the ACM International Con-
ference on Interaction Design and Children, 2011, pp. 238-241.

J. Kaye, M. Nelimarkka, R. Kauppinen, S. Vartiainen, and P. Iso-
somppi, “Mobile family interaction: How to use mobile technol-
ogy to bring trust, safety and wellbeing into families,” in Proceed-
ings of the International Conference on Human Computer Inter-
action with Mobile Devices and Services, 2011, pp. 721-724.

C. Harbig, M. Burton, M. Melkumyan, L. Zhang, and J. Choi,
“SignBright: A storytelling application to connect deaf children
and hearing parents,” in Proceedings of CHI, 2011, pp. 977-982.

J. Green, C. Stanley, R. Goldwyn, and V. Smith, Coding Manual-
for the Manchester Child Attachment Story Task, version 29 ed.,
University of Manchester, 2016.

M. Esposito, L. Parisi, B. Gallai, R. Marotta, A. Di Dona, S. La-
vano, M. Roccella, and M. Carotenuto, “Attachment styles in chil-
dren affected by migraine without aura,” Neuropsychiatric Dis-
ease and Treatment, vol. 9, pp. 1513-1519, 2013.

E. Moss, C. Cyr, and K. Dubois-Comtois, “Attachment at early
school age and developmental risk: examining family contexts
and behavior problems of controlling-caregiving, controlling-
punitive, and behaviorally disorganized children.” Developmental
Psychology, vol. 40, no. 4, pp. 519-532, 2004.

F. Eyben, M. Woellmer, and B. Schueller, “OpenSMILE: the Mu-
nich versatile and fast open-source audio feature extractor,” in
Proceedings of ACM International Conference on Multimedia,
2010, pp. 1459-1462.

F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent de-
velopments in OpenSMILE, the Munich open-source multimedia
feature extractor,” in Proceedings of the ACM International Con-
ference on Multimedia, 2013, pp. 835-838.

B. Schuller, S. Steidl, and A. Batliner, “The Interspeech 2009
Emotion Challenge,” in Proceedings of Interspeech, 2009.

M. L. Jordan, “Serial order: A parallel distributed processing ap-
proach,” in Advances in psychology.  Elsevier, 1997, vol. 121,
pp. 471-495.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-
ing Recurrent Neural Networks,” in Proceedings of the Interna-
tional Conference on Machine Learning, 2013, pp. 1310-1318.

J. Kone¢ny, J. Liu, P. Richtdrik, and M. Takac, “Mini-batch semi-
stochastic gradient descent in the proximal setting,” IEEE Journal
of Selected Topics in Signal Processing, vol. 10, no. 2, pp. 242—
255, 2016.

J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classi-
fiers,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 20, no. 3, pp. 226-239, 1998.

R. Ranawana and V. Palade, “Multi-classifier systems: Review
and a roadmap for developers,” International Journal of Hybrid
Intelligent Systems, vol. 3, no. 1, pp. 35-61, 2006.

”AA.VV.”, “Children’s attachment,” National Collaborating Cen-
tre for Mental Health, Tech. Rep., 2015.

J. Bowlby, Attachment and Loss.  The Hogarth Press and the

Institute of Psycho-Analysis, 1969.



