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Abstract

Speech-based depression detection has attracted significant at-
tention over the last years. A debated problem is whether it is
better to use language (what people say), paralanguage (how
they say it) or a combination of the two. This article ad-
dresses the question through the analysis of a Gated Multimodal
Unit trained to weight modalities according to how effectively
they account for the condition of a speaker (depressed or non-
depressed). The experiments involved 29 individuals diagnosed
with depression and 30 non-depressed participants. Besides an
accuracy of 83.0% (F1 score 80.0%), the results show that the
Gated Multimodal Unit tends to give more weight to paralan-
guage. However, the relative contribution of language tends to
be higher, to a statistically significant extent, in the case of non-
depressed speakers.

Index Terms: Computational paralinguistics, depression detec-
tion, social signal processing, Gated Multimodal Units

1. Introduction

According to the estimates of the World Health Organization,
depression affects roughly 4.4% of the world’s population [1].
However, only a limited number of patients receives appropriate
medical attention, partly because depressed people try to avoid
the stigma associated to the pathology and escape treatment,
partly because resources for depression diagnosis, an expen-
sive and time-consuming process, are not always available [2].
For these reasons, the computing community has made major
efforts towards the development of depression detection tech-
nologies (see, e.g., [3] for an extensive survey). Proposed ap-
proaches use a wide spectrum of modalities as input (e.g., facial
expressions [4], social media posts [5], etc.). However, it is
still unclear whether any modality is more likely than the others
to carry depression-relevant information. This article addresses
such a problem, at least to a partial extent, by testing whether
depression traces are more likely to appear in language (what
people say) or paralanguage (how they say it).

The experiments involved 59 participants, including 29
people diagnosed with depression. They were recorded while
answering questions about everyday life (e.g., “What did you do
in the last week end?”, “Do you have a family?”, etc.) and the
total amount of material corresponds to roughly 4 hours. Fol-
lowing the approaches typical of Social Signal Processing [6]
and Computational Paralinguistics [7], the recordings were con-
verted into sequences of feature vectors expected to account for
paralinguistic aspects of speech. Furthermore, the data were
manually transcribed and segmented into clauses, atomic lin-
guistic units including a noun, a verb and a complement. In
such a way, it was possible to jointly model language and par-

alanguage, while comparing their respective contributions to
depression detection.

Transcriptions and sequences of feature vectors were fed to
a multimodal approach based on Bidirectional Long Short-Term
Memory Networks (BiLSTM) [8] and Gated Multimodal Units
(GMU) [9]. These latter were trained to weight the two input
modalities according to how likely they led to the correct clas-
sification of a speaker. The accuracy was up to 83.0% (F1 score
80.0%). However, the key-result of the work is that the ratio
w = w;/wp (w; and w, are the weights that the GMU assigns
to language and paralanguage, respectively) tends to be higher,
to a statistically significant extent, in the case of control par-
ticipants. In other words, the relative contribution of language
tends to be more important in the case of control participants,
thus suggesting that these manifest their condition through lan-
guage more than depressed ones.

To the best of our knowledge, this is one of the first works
highlighting the difference above. The main reason why such
a result is important is that the question of whether depres-
sion detection should focus on language, paralanguage or the
combination of the two is still open. Some works show that
the best results can be achieved by using only one of the two
modalities (e.g., language was shown to lead to the best per-
formance in [10]). Others suggest that language and paralan-
guage should always be jointly modeled through multimodal
approaches (see, e.g., [11]). However, these appear to be par-
ticularly effective when including a component (e.g., a Gated
Multimodal Unit [9]) capable to select only one of the two in-
put modalities, thus suggesting that the other is unlikely to con-
vey enough depression-relevant information (see, e.g., [12, 13]).
Finally, it was shown that the multimodal approaches based on
language and paralanguage require sometimes extra input to be
effective (e.g., the point in time a sentence was uttered during a
conversation [14]). Overall, this brief state-of-the-art suggests
that the relative contributions of language and paralanguage are
still to be clarified and, for this reason, this article presents ex-
periments aimed at investigating such a problem.

The rest of this article is organized as follows: Section 2 de-
scribes the data used in the experiments, Section 3 describes the
depression detection approach, Section 4 presents experiments
and results, and Section 5 draws some conclusions.

2. The Data

The experiments have involved 59 participants split into two
groups, namely 29 individuals diagnosed with depression by
professional psychiatrists and 30 control individuals that have
never experienced mental health issues. Table 1 shows the
distribution of gender, age and education level across the two
groups. According to a x? test, there is no difference between



F M | Avg. Age Range | P S

Depressed | 21 8 45.7 23-69 | 16 13
9

18

Control | 21 440 2368 | 12 18
Total [42 [ 444

23-69 [ 28 31

Table 1: The table shows the demographic information avail-
able about the participants. The letters F and M refer to gender
and stand for female and male, respectively. The expression
Avg and Range refer to age and stand for average and range,
respectively. Finally, the letters P and S refer to the education
level and stand for primary (8 years of study at most) and supe-
rior (13 years of study at least), respectively.

depressed and control participants in terms of gender and educa-
tion level. Similarly, according to a two-tailed ¢-test, there is no
difference in terms of age. This is important because it means
that observable differences in paralanguage and language, the
two modalities used in this work, depend on the condition of a
participant (depressed or non-depressed) and not on other fac-
tors. Therefore, the proposed approach actually detects depres-
sion and not other individual characteristics.

Every participant was recorded while being interviewed
about everyday life aspects such as activities in the week end
or interaction with family members (interviewers posed always
the same questions and always in the same order). The result
is a corpus in which the average duration of the recordings is
242.2 seconds, corresponding to a total amount of 3 hours, 58
minutes and 10 seconds. The average length of the interviews
is 267.1 seconds for control participants and 216.5 seconds for
depressed ones. According to a one-tailed ¢-test, such a differ-
ence is statistically significant (p < 0.01). The interviewers
were instructed to speak as little as possible and, on average,
they acount for 10.0% of the interview duration. However, such
a percentage is 5.0% and 14.7% when taking into account only
control or only depressed participants. Such a difference is sta-
tistically significant with p < 0.01 according to a two-tailed
t-test.

The interviews were manually transcribed and segmented
into clauses, atomic linguistic units that include a noun, a verb
and a complement. The transcription is synchronized with the
speech signal so that it is possible to know what are the words
being uttered in correspondence of a given signal segment. This
allows one to apply multimodal approaches that jointly model
acoustic and linguistic aspects of speech (see Section 3). The
average number of clauses per participant is 114.0 and there
is a statistically significant difference (p < 0.05 according to a
one-tailed ¢-test) between control and depressed participants for
which the average number of clauses is 126.9 and 100.8, respec-
tively. However, the difference between the average number of
words per participant, 429.7 for depressed and 463.9 for con-
trol, is not statistically significant. This suggests that depressed
participants tend to use more words per clause.

The recordings were collected in three mental health centers
in Italy and all participants accepted to be involved on a fully
voluntary basis. Each of them signed a an informed consent
letter formulated in accord with the privacy and data protection
procedures established by the Italian and European laws. The
ethical committee of the Department of Psychology at Univer-
sitd degli Studi della Campania “Luigi Vanvitelli”, responsible
for the data collection, provided the ethical clearance with pro-
tocol number 09/2016.

Unimodal Clause Recognition ]
" 3 .
= : ]
I N « |
b E Ly | E e > L.
> EEF>X—> » Hy> & o £ pP=>C
S5 o} . ; s |: s
o % m 7] =
)
f I I N =
Clause k -
Untmodal Clause Recognition
| A
= : 3
R H >
Textual 5% J BelY) >
Transeription > § £ > Y — HE 5 ¢
P|EE i g
L | L | a\| =
Multi'l.ﬂ.odal Clause Recognition
Cp o
=]
o £ |AEx.Y) d
p: = H g > Cp Z —=>C
: o ) S
Hy = 2 =
N =

Figure 1: The figure shows the scheme of the unimodal and
multimodal recognition approaches. The decisions made at the
level of individual clauses are aggregated through a majority
vote. The expression cy, is the class assigned to clause k of a
given speaker.

3. The Approach

Section 2 shows that the interviews used in this work were seg-
mented into clauses, short sentences that act as analysis units in
the recognition experiments. The proposed approach (see Fig-
ure 1) classifies every clause as being uttered by a depressed
or control speaker. The decisions made at the level of indi-
vidual clauses are then aggregated through a majority vote (the
speaker is assigned to the class her or his clauses are most fre-
quently assigned to). The classification is performed using in-
dividual modalities (see Section 3.1) or their combination (see
Section 3.2).

3.1. Unimodal Classification

The unimodal clause classification approach (see Figure 1) in-
cludes three main steps:

e Feature Extraction: conversion of the two input streams
(speech signal and its transcription) into sequences of
feature vectors X and Y';

* Representation: conversion of X and Y into sequences
of hidden representations H x and Hy;

* Recognition: assignment of representation Hx or Hy to
one of the two possible classes (depressed or control).

In the case of the speech signal, the feature extraction process
segments the signal into 25 ms long analysis windows that start
at regular time steps of 10 ms (two consecutive windows over-
lap by 15 ms). After the segmentation, the signal intervals en-
closed in the individual windows are mapped into feature vec-
tors where the components correspond to the first 39 Mel Fre-
quency Cepstral Coefficients (MFCCs). Such a representation
is common in Computational Paralinguistics [7] and it has been
shown to be effective in capturing social and psychological phe-
nomena, including depression [15]. As a result, the feature ex-
traction process converts the original speech signal into a se-
quence X = (@1,...,xr) of feature vectors, each accounting
for one of the analysis windows.

In parallel to the speech signal, the feature extraction
process converts the transcription of every clause into a se-
quence Y = (y;,Ys---,Yy), Where every vector corre-
sponds to a word. The individual vectors y, are the output



Modality Level Acc. (%) Prec. (%) Rec. (%) F1 (%)

Text C 60.4 +0.003  56.1 +0.005 46.54+0.007 51.0 4+ 0.005
Text P 72.9+0.020 100.0 +0.000 44.84+0.040 61.940.040
Audio C 70.0 £ 0.006  65.1 £0.008 65.0£0.008 65.0 £+ 0.007
Audio P 74.6 +£0.021  76.94+0.032 69.0+0.306 72.74+0.021
Multimodal C 63.0 £ 0.004 58.14+0.005 54.5£0.010 56.2+0.007
Multimodal P 83.0+0.024 95.240.024 69.04+0.049 80.0 +0.032

Baseline C 50.1 434 434 434

Baseline P 50.0 49.1 49.1 49.1

Table 2: The table shows, at both clause (C) and person (P) level, accuracy, Precision, Recall and F1 measure. Since all experiments
are repeated 30 times, the values are accompanied by their respective standard errors.

of Wikipedia2Vec [16], a Word Embedding (WE) approach [17].
The core idea underlying WE is that it is possible to train a shal-
low network (only one hidden layer) to map every word n of a
training text into its following word n 4 1, where the words are
represented with one-hot vectors (the dimension of the vector
is the size of the dictionary and all components are set to zero
except the one that corresponds to the word to be represented).

Once the shallow network is trained, the weight w;; (corre-
sponding to the connection between input neuron ¢ and hidden
neuron 5) can be thought of as the 5" component of a vector
reresenting word ¢ in the dictionary. In the particular case of
this work, Wikipedia2Vec appears to work better than more so-
phisticated WE methodologies (e.g., the Bidirectional Encoder
Representations from Transformers or BERT [18]) and, there-
fore, it has been preferred. One probable reason is that clauses
tend to be short and do not allow sophisticated methodologies
to be of full benefit.

The sequences X and Y extracted from a given clause are
fed to two unimodal Bi-LSTMs with a final softmax layer that
gives as output the probability of the clause having been ut-
tered by a depressed speaker. Such an approach classifies every
clause individually, but what matters from an application point
of view is the classification of speakers. For this reason, the
decisions made at the level of individual clauses are aggregated
through a majority vote, i.e., a speaker is assigned to the class
her or his clauses are most frequently assigned to:

¢=arg rgggn(C), )]

where n(c) is the number of clauses assigned to class ¢ and C is
the set of all classes (depressed and control in the experiments
of this work).

3.2. Multimodal Combination

Sequences X and Y are fed to two unimodal BiLSTMs that give
as output two sequences of hidden representations H x and Hy
(see Figure 1). These are then combined through a Gated Multi-
modal Unit [9] providing as output a representation H that, fed
to a softmax layer, leads to the probability of the input clause
having been uttered by a depressed speaker. The main moti-
vation behind the use of the GMU is that, besides providing
a multimodal representation combining language and paralan-
guage, it weights the unimodal inputs according to how likely
they are to convey information relevant to the condition of the
speaker. In particular, Hx is assigned a weight w, and Hy is
assigned a weight w;, with w, + w; = 1. This allows one to
assess the contribution of individual modalities to the final clas-
sification outcome and, indirectly, it gives insight on whether

depression manifests itself through what people say or through
how they say it. Like in the unimodal case, the classifications
made at the level of individual clauses are aggregated through a
majority vote (see above).

4. Experiments and Results

The experiments were performed according to a k-fold exper-
imental setup (k = 5). The data corresponding to every par-
ticipant were randomly assigned to one of the folds. In such a
way, the data of each participant appears in one fold only and,
as a consequence, the same participant never appears in both
training and test set. This guarantees that the experiments are
person-independent, i.e., that the approaches recognize the con-
dition of the participants and not simply their voice or identity.
Every experiment was repeated 30 times and, at every repe-
tition, the weights of the networks were initialized randomly.
Correspondingly, the recognition results are reported in terms
of average and standard deviation across the repetitions.

The optimal value of the hyperparameters was found
through crossvalidation and the search space was defined by
taking into account a set of values that the literature consid-
ers to be standard. In the case of the learning rate, the values
were 1072, 3 x 1072, 1072, and 10~!. The number of training
epochs was set to 30, 50 or 80. The number of hidden neu-
rons in the Bi-LSTMs was set to 32, 64 or 128. The padding
values for the sequences of feature vectors extracted from the
speech signals were 40, 50, 60, 70, 80, 100 and 120. Finally,
the padding values for text were all integers between 9 and 14
included. The models were trained through backpropagation by
using the Adam optimizer [19] and categorical cross-entropy
as a loss function [20]. All models and training methodologies
were implemented with Tensorflow.

Table 2 shows the results at both clause level (effectiveness
at classifying individual clauses) and person level (effectiveness
at classifying participants through the application of a majority
vote over their clauses). The low standard deviation values sug-
gest that the classification outcomes do not change substantially
with the initialization of the networks. According to a two-
tailed t-test (p << 0.01), all systems improve over a random
classifier that assigns an unseen sample to a class ¢ according to
its a-priori probability p(c). The accuracy « of such a classifier
can be estimated as follows:

a=> p)? )
ceC

where C is the set of all classes (depression and control in the
experiments of this work).



1.0 T T T T
. . . . [l Control

09_ ___________ _________ ________ —Depressed

0.8 H-IF : - M L B R S
z | ‘ l N g =

..HHAHtA [ARRI

.. AU AAEEACT R

0.5

0 10 20 30 40 50

Participant

Il Control
@ Depressed

0 10 20 30 40 50

Participant

Figure 2: The left chart shows the w ratio for all participants (the horizontal dashed lines correspond to the average w values for
control and depressed participants). The right chart shows the same w values in descending order:

According to a two-tailed ¢-test (p < 0.01), the best per-
formance at the clause level can be observed in correspondence
of the unimodal paralanguage-based approach. However, it is
the multimodal combination of language and paralanguage that
leads to the best results at the person level, the one that actu-
ally matters from an application point of view. In particular,
the multimodal approach improves over the best unimodal ap-
proach to a statistically significant extent (p < 0.01 according
to a two-tailed ¢-test). This seems to suggest that the two uni-
modal classifers are diverse, i.e., they tend to make different
mistakes over different samples [21].

One possible explanation behind the diversity observed
above is that participants belonging to a given class tend to man-
ifest their condition through one modality, while those belong-
ing to the other class tend to do it through the other modal-
ity. For this reason, the left chart in Figure 2 shows, for ev-
ery participant, the value of the ratio w = w;/w,, Where w;
and w,, are the weights that the GMU assigns to language and
paralanguage, respectively. The higher such a ratio, the more
the GMU considers language to convey reliable information and
vice versa. The value of w is always lower than 1, thus suggest-
ing that paralanguage tends to play a more important role than
language in depression detection (at least for the data of this
work). However, the average w value for control participants
is 0.82, while it is 0.73 for depressed ones. Such a difference
is statistically significant (p < 10 according to a two-tailed
t-test) and this suggests that, on average, language plays a more
important role in the case of control participants than in the case
of depressed ones.

The right chart of Figure 2 shows the w values in descend-
ing order and further confirms the observations above. In par-
ticular, the chart shows that the lowest 18 values correspond to
depressed participants, thus suggesting that roughly two thirds
of these latter (18 out of the total 29) can be correctly iden-
tified by simply finding the speakers for which w is below or
equal to a threshold corresponding to the 18" value from the
bottom. In other words, the w value can possibly be used as a
confidence score when a speaker is classified as depressed. The
remaining 11 depressed speakers distribute roughly uniformly
across the rest of the chart. However, it can be observed that 15
of the speakers corresponding to the top 20 w values are non-
depressed, thus confirming the tendency of the GMU to assign
higher weights to language in the case of control participants.

5. Conclusions

This article presents experiments on automatic depression de-
tection, a task that was performed with accuracy up to 83%

(F1 score 80%) over a corpus of 59 interviews involving both
depressed and non-depressed speakers. In addition, the ar-
ticle shows the analysis of the weights that a Gated Multi-
modal Unit [9] attributed to language and paralanguage, the two
modalities used in the experiments. The goal was to identify
the modality that contributes most to depression detection and
the results show that, at least for the data used in this work, it
is paralanguage to consistently be assigned the higher weight.
One possible explanation is that the proposed approach is based
on the recognition of clauses, sentences that include only a few
words (less than 10, on average). Therefore, the input texts
might be too short for text modeling approaches to achieve their
best results. However, the most interesting observation is that
the ratio w between the weights of language and paralanguage
is higher, to a statistically significant extent, in the case of non-
depressed speakers. This suggests that the role of language is
likely to be more important in the case of control participants
than in the case of depressed ones.

One of the most important consequences of the observa-
tions above is that the two modalities appear to be a source of
diversity, the tendency of different classifiers to make differ-
ent mistakes [21]. Such a property was shown to increase the
chances of classifier ensembles [22] to outperform their best
members [23]. Therefore, in the experiments of this work, di-
versity across modalities might be at the origin of the significant
performance difference between the multimodal approach and
the best unimodal recognizer (83.0% vs 74.6% in terms of accu-
racy). In this respect, the main question seems to be not whether
there is a modality that is better than the others (like the state-of-
the-art in Section 1 seems to suggest), but whether it is possible
to find multiple modalities that can correct each other when one
or some of them do not carry reliable information. Furthermore,
the experiments of this work suggest that the modality carrying
the most reliable information can be different for people be-
longing to different classes. This further confirms that the best
strategy is not necessarily looking for the best modality, but for
a set of modalities that cover all groups of people appearing in
the data.
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