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ABSTRACT
Attachment is a psychological construct that accounts for whether
children are secure (the parents meet their physical and emotional
needs) or insecure (the parents do not meet their physical and
emotional needs). Unless identified and supported early enough, in-
secure children develop higher chances of experiencing issues such
as antisocial behaviour or suicidal tendencies. For this reason, this
article proposes a multimodal approach for attachment recognition
in school age children (5-9 years old). In particular, the approach in-
fers the attachment condition of a child from facial expressions and
nonverbal vocal behaviour. The experiments involved 104 children
that were recorded while undergoing the Manchester Child Attach-
ment Story Test, an instrument that child psychiatrists use often to
identify insecure children. The results show that attachment can
be recognized with accuracy up to 71.2% (F1 score 62.4%).
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1 INTRODUCTION
According to child psychiatrists, the way parents (or more gen-
erally caregivers) address the needs of children leaves traces in
terms of attachment, a psychological construct that accounts for
whether “the infant’s search for consistent care is met with either
success, leading to a sense of emotional security, or failure, with inse-
curity as a result” [23]. In particular, children are said to be secure
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or insecure depending on whether they perceive caregivers to be
responsive or not, respectively [43]. While resulting from early
childhood interactions, the attachment condition shapes the per-
ception of relationships during the whole life of an individual [7].
As a consequence, once they become adult, insecure children tend
to have more problems with colleagues, friends and romantic part-
ners [23]. This leads to lower levels of statisfaction in social, family
and professional life, respectively. Furthermore, the lack of care
and response that insecure individuals experience in childhood
reinforces stress responses that, in adult life, increase the chances
of, e.g., coronary pathologies [9, 29] or antisocial tendencies [44].

The best way to address the issues above is to identify and sup-
port insecure children as early as possible. For this reason, this
article proposes a multimodal approach aimed at inferring the at-
tachment condition of school-age children (5 to 9 years old) from
facial expressions and nonverbal vocal behaviour. The approach
processes independently these two modalities and then applies a
fusion scheme to combine the decisions made separately for each
of them. Experiments and results show that the multimodal combi-
nation improves over both unimodal approaches to a statistically
significant extent.

The experiments involved 104 children randomly recruited among
primary school pupils. Every child was recorded while undergoing
the Manchester Child Attachment Story Task (MCAST) [15], a test
that child psychiatrists commonly apply to assess the attachment
condition of children. During the MCAST, the participants describe
everyday life interactions between children and their mothers (see
Section 3 for more details). Assessors identify the attachment con-
dition through the way children perform such a task. Therefore,
it is common clinical practice to record the administration of the
MCAST in order to analyze the behaviour of children in detail. Such
an approach naturally lends itself to the application of Social Signal
Processing (SSP), the computing domain aimed at inferring social
and psychological phenomena from nonverbal behaviour [41]. In
particular, the experiments show that SSP methodologies lead to
an accuracy of 64.6% (F1 Score 56.2%) for facial expressions, 68.9%
(F1 Score 59.6%) for nonverbal vocal behaviour and 71.2% (F1 Score
62.4%) for their combination.

To the best of our knowledge, this is one of the earliest works
aimed at the recognition of attachment in school-age children (see
Section 2). As a consequence, the literature does not provide indica-
tions on behavioural modalities most likely to convey attachment-
relevant information. The proposed approach is based on facial
expressions and nonverbal vocal behaviour because these modali-
ties were shown to effectively account for a wide range of social
and psychological phenomena (see, e.g., [36, 41]). The results of
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the work appear to confirm such an observation because both uni-
modal and multimodal approaches perform well above chance. This
suggests that children, while undergoing the MCAST, actually man-
ifest their attachment condition through facial expressions and
nonverbal vocal behaviour. In addition, the results show that the
multimodal approach improves over unimodal ones to a statisti-
cally significant extent. This suggests that face and speech tend to
convey complementary information, a condition necessary for two
modalities to mutually improve each other [33].

The rest of this article is organized as follows: Section 2 provides
a survey of previous work, Section 3 describes attachment assess-
ment and data collection, Section 4 presents the proposed approach,
Section 5 reports on experiments and results and the final Section 6
draws some conclusions.

2 PREVIOUS WORK
Mental health issues have attracted significant attention in the
computing community, especially in regard to “systems designed
for use in prevention of mental illness, standalone computer-based
treatment and self-help systems, and systems intended for use in
conjunction with face-to-face psychotherapy [...] monitoring of and
self-monitoring by clients, communication (such as computed medi-
ated therapy), delivery of content [...] and interaction with content
[...]” [8]. In the case of pathologies such as depression or autism,
the literature proposes a large number of approaches aimed at au-
tomatic detection and diagnosis, while in the case of attachment,
most efforts focus on different problems.

In several cases, attachment-relevant works aim at ensuring
positive relationships between users and technology, in particular
social robots [17–19] and interactive systems [24, 25, 27, 34, 42].
The core-assumption underlying such works is that attachment
plays a role not only in the interaction between people, but also in
the interaction between people and machines. This is particularly
evident in the case of social robots expected to interact with people
like people do with one another [5]. The experiments in [17] show
that the more a robot is sophisticated, the more it is effective at
establishing attachment bonds with its users. In a similar vein, the
experiments in [18, 19] show that robots simulating attachment-
related behaviours can help their users to develop parenting styles
likely to foster secure attachment. Similar effects were observed
for digital artefacts not designed to replicate the way people be-
have [24, 25]. The result was a design theory aimed at ensuring that
users, in particular children with limited attention span, establish
longer term relationships with the technologies they use [27, 34].
As an indirect confirmation, the experiments in [42] have shown
in quantitative terms that secure children tend to respond to a
software system in a way that is more coherent with the way the
system is designed.

Other attachment-related works support the development of se-
cure attachment through the use of technologies for communication
between parents and children [13, 16, 20], based on the assumption
that it is quality of interaction that shapes the attachment condition
of children. The work proposed in [13] suggests that relationships
between parents and children can be enhanced, from an attachment
point of view, through the use of stickers capable to emit simple
stimuli. Parents and children can design the stimuli and decide to

what objects the stickers must be applied. The focus in [16] is on
helping parents to better communicate with deaf children, espe-
cially in regard to telling stories. The intention of the authors is to
increase the chances of secure attachment despite the hearing diffi-
culties. Finally, the experiments in [20] aim at showing that mobile
technologies can provide a good communication environment for
families. In this way, children have higher chances of developing
secure attachment.

Only a few works presented in the literature addressed the prob-
lem of recognizing attachment based on observable evidence. The
earliest works showed that there is a relationship between attach-
ment and blood pressure measured through ear pulse waves [28, 40].
While not being an attempt to perform attachment recognition,
these results still provided an initial indication that attachment
leaves machine detectable traces. Actual attachment recognition
was addressed only recently for adults and children. In the first
case [30], the proposed approach was based on photoplethysmogra-
phy, facial behaviour, paralinguistics and language. The best result
was a Root Mean Square Error of 12.1 in predicting the scores ob-
tained with an attachment self-assessment questionnaire. In the
second case [35], deep networks were fed with a representation
of the way children move and the best result was an accuracy of
roughly 75% in discriminating between secure and insecure chil-
dren.

Overall, this state-of-the-art suggests that the computing com-
munity has addressed the problem of attachment only to a limited
extent. In most cases, the focus was on improving the interaction
between users and technology or the interaction between people
through technology. Only a few works, to the best of our knowl-
edge, tried to infer the attachment condition of an individual from
observable evidence (verbal or nonverbal behaviour and language).
One possible reason is that the computing community has focused
on issues such as depression and autism because these impact the
wellbeing of an individual in a more evident way. However, as the
long-term effects of insecure attachment become increasingly more
evident [23], attachment recognition might attract more attention
in the next years.

3 DATA COLLECTION
The Manchester Child Attachment Story Task (MCAST) [15] is one
of the tests that child psychiatrists use most frequently to assess the
attachment condition of children. During the MCAST, participants
listen to five short story stems about a child and her mother:

• Breakfast (the child wakes up in the morning and the mother
prepares breakfast);

• Nightmare (the child wakes up after a nightmare and calls
the mother for comfort);

• Hopscotch (the child gets a wound on her knee and asks the
mother to provide first aid);

• Tummyache (the child feels a pain in the stomach and asks
the mother to provide assistance);

• Shopping (the child looses contact with the mother in a shop-
ping mall and tries to re-establish contact with her).

At the end of each stem, the participants have to explain how the
story continues with the help of two dolls corresponding to the two
main characters (baby doll and mummy doll). The key-assumption
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Figure 1: The picture shows the MCAST administration sys-
temused in the experiments. Element 1 corresponds to a lap-
top screenwhere the participants canwatch videoswhere an
actor delivers the story stems and provides guidance about
the steps of the test. Element 2 is a button that the partici-
pants are asked to push every time they complete anMCAST
step. Elements 3 and 4 are the dolls that participants use to
represent the continuation of the story stems. Element 5 is
the toy house that helps the children with the story stem
representation.

is that narrative tasks are “[...] a vehicle for accessing the representa-
tional world of young children through the developmentally appropri-
ate domain of play, and these techniques have been used successfully
in investigations of representation and attachment [...]” [39]. In other
words, while performing an activity that looks like a game because
of the dolls, children manifest their attachment condition through
the way they tell the continuation of the stems. The expectation is
that children in different attachment condition tend to represent
the stories in a different way.

Figure 1 shows the School Attachment Monitor (SAM), the ap-
paratus used to administer the test and record the children. The
administration protocol was based on the following main steps:

• Story stem delivery: the SAM plays a video on a computer
screen (element 1in Figure 1) where an actor delivers a story
stem and, at the end, prompts the participants to continue
the story by using the dolls (elements 3 and 4 in Figure 1)
and the play mat representing an apartment (element 5 in
Figure 1);

• Story representation: the participants, while being recorded
with a camera and a microphone, continue the story stem
and, at the end, they press the “Finish” button (element 2 in
Figure 1);

• Iteration: if the story stem is one of the first four, the system
goes back to the first step, otherwise it concludes the test.

P1 (5-6) P2 (6-7) P3 (7-8) P4 (8-9)
F 9 (8.6%) 22 (21.1%) 15 (14.5%) 11 (10.6%)
M 10 (9.6%) 18 (17.3%) 14 (13.5%) 5 (4.8%)
S 9 (8.6%) 22 (21.1%) 18 (17.3%) 10 (9.6%)
I 10 (9.6%) 18 (17.3%) 11 (10.6%) 6 (5.9%)

Tot. 19 (18.2%) 40 (38.4%) 29 (27.9%) 16 (15.5%)
Table 1: The table shows how the 104 participants distrib-
ute across different school levels, from Primary 1 (P1) to Pri-
mary 4 (P4). For every level, the table provides gender distri-
bution (F andM stand for female andmale, respectively) and
attachment condition distribution (S and I stand for secure
and insecure, respectively).

A pool of four assessors that attended the training course to become
professional MCAST assessors [14] examined the videos collected
after every administration of the test. In particular, the assessment
was performed according to common clinical practice: two random
members of the pool assess independently the same child and,
if there is agreement, the assessment is accepted, otherwise, all
members of the pool discuss and achieve a consensual decision.

In total, the experiments involved 104 children randomly re-
cruited in different primary schools. The total lenght of the record-
ings is 18 hours, 30 minutes and 34 seconds (the average is 640.7
seconds per child) and Figure 2 shows the amount of material for
every individual participant. The average length of the videos for
the different story stems is 137.0± 78.3 for Breakfast, 117.6± 73.6 for
Nightmare, 116.3 ± 66.4 for Hopscotch, 111.2 ± 58.2 for Tummyache
and 158.4 ± 78.5 for Shopping Mall. The difference between this
latter stem and the others is statistically significant (p < 0.05 ac-
cording to a two-tailed t-test with unequal variance). Similarly, the
Breakfast narratives are longer, to a statistically significant extent,
than those of the stems with a smaller average length. In the case of
the remaining three narratives, there is no statistically significant
difference between the respective average durations.

One possible reason for Breakfast leading to longer narratives is
that, being the first story of the MCAST, it is used to provide infor-
mation that does not need to be repeated for the other stems (e.g.,
an overall assessment of the relationship between the story child
and the mother). For what concerns Shopping Mall, the probable
reason for leading to the longest narratives, on average, is probably
that the stem does not take place in the same setting as the others
(the apartment corresponding to the play mat in Figure 1). There-
fore, children are likely to need extra-time to introduce information
about the differences with respect to the other stems.

Table 1 provides demographic information about the 104 children
involved in the experiments. In terms of gender distribution, there
are 57 female participants and 47 male participants, corresponding
to 54.8% and 45.2% of the total, respectively. For what concerns
attachment, there are 59 secure participants and 45 insecure partic-
ipants, corresponding to 56.5% and 43.4% of the total, respectively.
According to a χ2 test, there is no statistically significant difference
with respect to the attachment distribution observed in the general
population [10, 26]. The data were collected according to the ethical
regulations of the country where the experiments were conducted.
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Figure 2: The chart shows, for every participant, the total lenght of the videos at disposition.

In particular, children were involved in the experiments only upon
written authorization of their parents. Furthermore, they were al-
lowed to interrupt the participation whenever they did not feel
comfortable. Parents were given access to the data of their children
and were given the possibility to destroy them partially or totally.

4 THE APPROACH
This section presents the two unimodal approaches used in the
experiments and the way their outcomes were combined.

4.1 Face-Based Unimodal Recognition
Section 3 shows that the School Attachment Monitor, the appara-
tus used for collecting the data, records children undergoing the
MCAST. The videos make it possible to analyze the facial expres-
sions of children and the proposed face-based approach includes
three main steps, namely feature extraction, recognition and aggre-
gation. The feature extraction step starts by extracting a vector ®f
of dimension D = 17 from every video frame. The components
fi correspond to the activation intensity of D Action Units (AU)
extracted with OpenFace [2], a publicly available package for facial
behaviour analysis:

• Eyes Area: Inner brow raiser (AU1), outer brow raiser (AU2),
brow lowerer (AU4), upper lid raiser (AU5), cheek raiser
(AU6), lid tightener (AU7), blink (AU45);

• Nose Area: Nose wrinkler (AU9);
• Mouth Area: Upper lip raiser (AU10), lip corner puller (AU12),
dimpler (AU14), lip corner depressor (AU15), chin raiser
(AU17), lip stretched (AU20), lip tightener (AU23), lips part
(AU25), jaw drop (AU26).

Given a training set, it is possible to identify, for each of the AUs
above, the top 5% intensity values that were observed. Such values
account, at least for a particular AU, to the biggest differences with
respect to a neutral expression. Correspondingly, for every AU, it
is possible to identify a threshold θ that discriminates between AU
intensity values in the top 5% (meaning that they are above the
threshold) and the others.

Thanks to the θ thresholds above, it is possible to calculate the
fraction of frames in a video such that the intensity of a particular
AU is in the top 5% of the training set. This leads, for every video, to
a feature vector where the component i is the percentage of frames
in which the intensity of the ith AU is above the corresponding
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Figure 3: The figure shows how information flows through
the stacked RNNs. Vectors ®ht and ®h′t correspond the hidden
states of the two RNNs, while the ®xt s are the feature vectors
extracted from the speech data. Rectangular blocks repre-
sent hyperbolic tangent layers, while the square block is a
softmax layer.

θ threshold. The feature vectors obtained through such a process
allow one to train a classifier that can discriminate between secure
and insecure children, a task that corresponds to the recognition
step of the approach. In the experiments of this work the classifier
is a Logistic Regression.

Once the classifier has been trained, it is possible to classify a
child as secure or insecure and, given that there are 5 different
videos per child (one per MCAST story stem), there are 5 classi-
fication outcomes. In particular, the Logistic Regression provides,
for every video, the two posterior probabilities corresponding to
classes secure and insecure. This allows one to assign a child to the
class corresponding to the highest average posterior probability, an
aggregation approach referred to asWeighted Average (WA).

4.2 Speech-Based Unimodal Recognition
The unimodal speech-based approach includes three main steps,
namely feature extraction, recognition and aggregation. The first step
relies on OpenSmile [11, 12], a publicly available software package
for speech processing. The signal is first segmented into 33 ms long
non-overlapping windows (every window corresponds to a frame
in the video) and then, the content of every window is converted
into a vector of dimension D = 32 that includes 16 features and the
respective delta coefficients (these latter are the differences between
the value of the feature in the current window and the value of the
feature in the previous window). The 16 features are as follows:

• Root mean square of the energy (1 feature): it accounts for
how loud children speak;
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• Mel Frequency Cepstral Coefficients (12 features): it accounts
for the phonetic content of speech;

• Zero Crossing Rate and Fundamental frequency (2 features):
they account for thefrequency on which most of the ignal
energy concentrates and contributes to define the way a
voice sounds;

• Voicing probability (1 feature): it accounts for the presence
of silences.

The motivation behind the choice of the features above is that they
were designed for an emotion recognition challenge [37] and, since
then, they were shown to be effective for the inference of a wide
spectrum of social an psychological phenomena from speech.

The feature extraction process converts the speech signals into
sequences X = (®x1, . . . , ®xT ) of feature vectors that are given as
input to the recognition step. In particular, the sequences X are fed
to two stacked Recurrent Neural Networks (RNNs) [31], i.e., two
RNNs connected in such a way that the hidden states of the first one
act as input to the second one (see Figure 3). The motivation behind
the choice of RNNs is that such models are suitable for processing
sequential information (the sequences X account for changes over
time of speech signal properties). Furthermore, the use of a stacked
architecture is expected to capture higher level of abstraction, i.e.,
how the changes captured through the first RNN change over time.

One of the main problems in training stacked RNNs is that gra-
dients can vanish or explode when the input sequences are too
long [32]. For this reason, the input sequences X were split into
non-overlapping segments including to L = 128 vectors each (cor-
responding to roughly 4.25 seconds of speech). This is a tradeoff
between the need to have sequences long enough to capture long-
term temporal information, but short enough to avoid training
issues. The model was trained to provide as output the probability
of one of the segments above being uttered by an insecure child
(through the softmax layer the second RNN is connected to). Given
that the sequences X include multiple segments of 128 vectors,
there are multiple decisions for every speech recording. For this
reason, a speech recording is assigned to the class its segments
are most frequently assigned to. In other words, if fs and fi are
the fractions of segments assigned to class secure and insecure
(fs + fi = 1), the recording is assigned to class ĉ = argmaxc=i,s fc .

Like in the case of the unimodal face-based approach, the record-
ings corresponding to the MCAST stems are classified individually
and, therefore, there are five classification outcomes per child. This
requires an aggregation step that is performed like in the case of
the face-based approach (see end of Section 4.1), namely through
Weighted Average. In particular, children are assigned to the class
ĉ corresponding to the highest average value of fĉ , where fc is the
fraction of segments assigned to class c in a recording (see above).

4.3 Multimodal Combination
The unimodal approaches presented in this section classify every
recording as being produced by a secure or insecure child, respec-
tively. Given that, for every child, there are five recordings and two
modalities, this means that there are 10 classification outcomes per
child. The combination is performed using the same approaches
applied for the unimodal recognizers, i.e., the Weighted Average
(WA). The scores output by the various classifiers for all recordings

assigned to a class c are averaged. The child is then assigned to the
class for which the average is greater.

5 EXPERIMENTS AND RESULTS
The experiments were performed according to a k-fold protocol
(k = 10). The 104 participants were split into k disjoint groups
through a random process and every fold was created by using all
the data corresponding to the participants of a group. In such a
way, the experiments were person independent, i.e., the participants
were never represented in both training and test set. This ensures
that the approach actually recognizes the attachment condition of
the children and not their identity. Given that the training process
involves a random component (initialization of the RNNs and par-
titioning of the data into folds), every experiment was repeated
R = 10 times. For this reason, all results are presented in terms of
average and standard deviation of different performance metrics
over the R repetitions.

In the case of the unimodal face-based appoach (see Section 4.1),
the recognition is performed using a Logistic Regression [3]. Such
a model does not require one to set any hyperparameters and,
therefore, there was no need to perform crossvalidation. In the
case, of the speech-based unimodal approach, there are multiple
hyperparameters to be set, but they were all given values considered
to be standard in the literature. As a consequence, no crossvalidation
was performed either. In particular, the dimension of the hidden
states was set to D = 70, the learning rate to 10−3 and the number
of training epochs toT = 50. The training was performed according
to amini-batch strategy aimed at limiting computational issues [22].
Correspondingly, the RNNswere trained over subsets of the training
material including B = 512 sequences each (the union of all mini-
batches corresponds to the whole training set and all mini-batches
are disjoint). The risk of overfitting was limited by applying L2
regularization (the λ parameter was set to 10−2).

Table 2 shows the attachment recognition results for the individ-
ual story stems (the results were obtained by training and testing
over the material corresponding to one of the stems) and for their
combination (the results were obtained throughWA by aggregating
the results obtained for the individual stems). The best Accuracy
and F1 score (71.2% and 62.4%, respectively) were obtained with
the multimodal combination based on WA. The improvement with
respect to the best unimodal results is statistically significant (ac-
cording to a two-tailed t-test with unequal variance). The baseline
for comparison is a random system that assigns a child to class
c with probability p(c) corresponding to its prior (see lowest line
of Table 2). All approaches improve over such a baseline to a sta-
tistically significant extent. This confirms that attachment leaves
traces sufficiently consistent to allow automatic detection in both
modalities, at least for the 104 children involved in the experiments.

The effectiveness of the unimodal approaches changes signifi-
cantly from one story stem to the other. In the case of the face-based
recognizer, the best performances have been obtained forNightmare
and Tummyache (the accuracies for these two stems are higher, to a
statistically significant extent, than those observed for the others).
In the case of the speech-based approach, the best results were
obtained for Breakfast, Shopping Mall and Hopscotch (the difference
with respect to the other stories is statistically significant). One
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Story Acc. (%) Pre. (%) Rec. (%) F1 (%)
Face-Based

Breakfast 59.4±1.2 52.9±1.4 51.9±2.5 52.3±1.6
Nightmare 61.9±2.3 56.5±2.9 52.2±3.2 54.3±3.0
Tummyache 61.4±2.8 55.9±2.9 49.8±2.5 52.6±2.4
Hopscotch 57.4±2.0 50.2±2.7 44.3±3.1 47.0±2.3
Shop. Mall 58.9±2.1 51.9±2.5 50.5±4.4 51.1±3.4
All (WA) 64.6±1.2 60.6±2.0 52.4±2.1 56.2±1.2

Speech-Based
Breakfast 65.8±2.7 63.9±4.1 47.3±8.0 54.0±5.9
Nightmare 61.0±3.6 56.7±5.9 41.8±6.4 47.9±5.6
Tummyache 60.1±4.5 54.5±6.3 46.9±6.8 50.3±6.0
Hopscotch 64.2±4.4 60.3±6.4 47.3±8.2 52.7±7.1
Shop. Mall 65.3±2.6 62.6±5.1 48.5±5.0 54.4±3.3
All (WA) 68.9±2.0 67.8±2.4 53.3±5.0 59.6±3.8

Multimodal
Breakfast 66.8±2.5 62.7±3.8 56.0±3.4 59.1±2.5
Nightmare 66.0±3.4 62.5±4.0 52.7±7.3 57.0±6.0
Tummyache 64.8±2.3 61.1±3.0 50.7±4.7 55.3±3.7
Hopscotch 63.4±2.0 59.9±3.8 44.1±3.4 50.7±2.7
Shop. Mall 62.0±2.5 57.5±3.6 42.0±5.1 48.5±4.5
All (WA) 71.2±1.6 71.5±2.4 55.6±4.9 62.4±3.1

Random Baseline
Random 51.0 43.0 43.0 43.0

Table 2: This table shows the performance of the proposed
approach in terms of Accuracy (Acc.), Precision (Pre.), Re-
call (Rec.) and F1 score (F1). The performance metrics are
reported in terms of average and standard deviation over 10
repetitions (at every repetition, the RNNs have been initial-
ized differently and the data were split differently for the
k-fold). The acronym WA stand for Weighted Average. The
Random classifier assigns samples to classes according to a-
priori probabilities.

probable explanation is that children react differently to different
stems and, therefore, some of these elicit detectable attachment
behaviours more frequently than others among the experiment
participants.

One interesting aspect of the results in Table 2 is that the uni-
modal approaches tend to achieve their best performances over
different story stems (see above). In particular, the highest pefor-
mances of one unimodal approach correspond to the lowest per-
formances of the other one and viceversa. Such a complementarity
probably accounts for the tendency to make different mistakes over
different samples, a property referred to as diversity [33] and known
to increase the chances of a classifier ensemble [21] to perform bet-
ter than its best individual member. This is the probable reason
why, for the individual story stems, the multimodal combination
performs at least as well as the best unimodal approach in 4 cases
out of 5 (the only exception is Shopping Mall). Furthermore, the
diversity is likely to explain why the aggregation of the decisions

Level Acc. (%) Pre. (%) Rec. (%) F1 (%)
P1 64.7±4.3 71.8±4.3 54.0±7.0 61.5±6.0
P2 67.8±2.8 70.5±4.4 48.9±6.3 57.5±4.9
P3 75.9±2.3 72.9±4.8 59.1±9.8 64.6±6.1
P4 78.8±5.3 73.4±11.7 71.7±13.7 71.4±8.0

Table 3: The table shows the performance at level Primary 1
(P1) to Primary 4 (P4). See Table 2 for the metrics.

made by the multimodal approach for the individual stems leads to
the best results.

Section 3 shows that the 104 experiment participants distribute
over primary school levels corresponding to different ages, from P1
(age-range 5 to 6) to P4 (age range 8-9). This means that the children
are likely to be at different development stages [6] and, correspond-
ingly, they display different levels of compliance and proficiency
in undergoing the MCAST. For this reason, Table 3 shows how the
performance of the WA multimodal approach changes for children
belonging to different school levels (the analysis was done for such
approach because it has the best performance). The difference be-
tween P3 and P4 is not statistically significant and, therefore, the
approach appears to perform with the same effectiveness for the
children of these two levels. However, the difference between P3
and the others is statistically significant, thus suggesting that the
performance of the approach tends to improve for older children.
In particular, when taking into account only the children at levels
P3 and P4, the Accuracy is 76.9%, the Precision is 73.1%, the Recall
is 63.6% and the F1 Score is 67.0%.

Another factor that can interplay with the effectiveness of the
approach is the amount of data available for individual children.
Section 3 shows that the length of the recordings changes signifi-
cantly from one participant to the other (see Figure 2). Therefore,
it is possible to expect that the chances of correctly identifying
the attachment condition of one child depend on how long her or
his recordings are. For this reason, the children have been split
into two groups, namely those that the multimodal approach has
correctly classified in all 10 repetitions of the experiments (54 out
of 104) and those that the same approach has recognized correctly
only in some of the repetitions (50 out of 104). The average length
of the recordings is 631.8 ± 236.7 sec in the first case and 650.6 ±
312.02 sec in the second case. According to a two-tailed t-test with
unequal variance, such a difference is not statistically significant
and this suggests that there is no association between the length
of the material available for a participant and the chances that this
latter is classified correctly.

One possible explanation of the result above is that the be-
havioural traces of attachment are sufficiently consistent to be
detected irrespectively of the amount of data at disposition, at least
to a certain extent. However, an alternative explanation is that there
is enough material for each child to allow automatic attachment
recognition. In particular, Figure 2 shows that the shortest record-
ing length for a child is 170.2 seconds (close to 3 minutes), a length
that might be above the threshold (if any) necessary for attachment
assessment. In other words, it is not possible to exclude that the
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Gender Acc. (%) Pre. (%) Rec. (%) F1 (%)
Face-Based

Female 71.4±2.5 74.9±3.9 56.2±2.7 64.2±3.0
Male 56.4±1.8 46.2±2.1 47.4±4.3 46.7±2.3

Speech-Based
Female 66.5±4.2 66.0±5.4 55.0±7.9 59.8±6.0
Male 71.7±3.5 71.7±6.7 50.0±5.7 58.8±5.1

Multimodal
Female 72.5±2.6 74.4±3.2 60.4±5.1 66.6±3.8
Male 69.6±3.2 66.9±4.8 48.9±8.6 56.2±6.6

Table 4: This table shows the performance of all approaches
(unimodal and multimodal) for female and male partici-
pants separately.

corpus used in the experiments does not include children that do
not speak enough to provide sufficient material.

The last factor that can possibly interplay with the effectiveness
of the approach is gender. For this reason, table 4 shows the perfor-
mance of both unimodal and multimodal approaches for female and
male participants separately. In all cases, the performance differ-
ence is statistically significant (p < 0.05 according to a two-tailed
t-test with unequal variance), thus suggesting that there is an asso-
ciation between gender and recognition effectiveness. Given that
the approach tends to be more effective for later school levels (see
above), one possible explanation is that experiment participants
of different gender distribute differently across school levels (see
Table 3). However a χ2 test shows that this is not the case and,
therefore, such an explanation is not valid. In a similar vein, it
is possible that the differences of Table 4 depend on a different
gender distribution across attachment conditions. However, a χ2

shows, once again, that this is not the case. Therefore, the results
of Table 4 are likely to depend on actual differences in the way of
expressing attachment between female and male participants. In
particular, female children seem to express their condition more
reliably through facial expressions, while male ones seem to do it
through nonverbal vocal behaviour.

6 CONCLUSIONS
This article presents experiments on automatic attachment recog-
nition in school-age children. The proposed multimodal approach
takes into account two behavioural streams (facial expressions and
nonverbal vocal behaviour) and automatically recognizes whether
a child is secure or insecure, the two attachment conditions it is
possible to observe in an individual. The results show that the best
results were obtained through the combination of decisions made
at the level of individual modalities and corresponds to an accuracy
of 71.2% (F1 Score 62.4%). The multimodal approach outperforms
all unimodal recognizers to a statistically significant extent.

According to John Bowlby, originator of the Attachment Theory,
“[...] the younger the subject the more likely are his behaviour and
his mental state to be the two sides of a single coin” [4]. However,
the results of this work seem to contradict such an observation
and show that the proposed approach, based on the consistency

between observable behaviour and attachment condition, tends to
perform better over children of at least 7 years of age (the age range
corresponding to levels P3 and P4 at primary school). In particular,
the results show that the accuracy of the proposed approach is
76.9% (F1 score 67.0%) for levels P3 and P4, while it is 66.8% (F1
Score 58.8%) for P1 and P2. One possible explanation is that the
MCAST administration system used in the experiments (see Sec-
tion 3) requires children to undergo the assessment without the
assistance of an adult. In such a condition, older children might be
more likely to provide reliable information because they tend to be
more autonomous and capable to perform a task without help.

The main implication of the observations above is that not all
children for which the MCAST is designed can equally benefit
from the automation of attachment assessment. This is important
because insecure attachment should be detected as early as possible
to avoid the negative consequences described in Section 1. This
opens two possible research avenues, namely the improvement
of the recognition approach (e.g., by taking into account further
modalities or by improving methodologies for behaviour analysis)
and the adaptation of the administration system (e.g., by adding a
function capable to assist children or to attract the attention of an
adult that can provide help).

In addition to the above, another possibility is to associate a con-
fidence measure to the decisions of the system. Such a technique
is commonly used to discriminate between people for which an
approach can be trusted and people for which it cannot. For exam-
ple, in the case of depression, confidence measures were shown
to reduce the workload of doctors by roughly two thirds, while
still maintaining a performance comparable to an average General
Practitioner [1]. The main advantage of a confidence measure is
that it does not require one to exclude certain participants a-priori
(e.g., younger children according to the considerations above) and
it allows an approach to identify as many cases as possible.

One of the main reasons for automating the administration of
psychiatric tests is to make the detection of mental health issues
more efficient, i.e., to reduce the amount of time needed to verify
whether a person is affected by a problem or not. In the case of
MCAST, the bottleneck is the time needed for children to com-
plete the different story stems. The experiments suggest that longer
recordings do not correspond to higher chances of correct classifi-
cation. However, this might be the case because all children have
been talking for a substantial amount of time (Section 5 shows that
the smallest amount of material corresponding to one child is close
to 3 minutes). Therefore, one possible direction for future work
is to estimate the minimum amount of time needed to achieve a
satisfactory performance. Once such a minimum is known, it is
possible to investigate whether the MCAST can be modified in such
a way that children do not need to speak more than necessary. This
would help to further improve the efficiency of the process.

To the best of our knowledge, this article proposes the first multi-
modal approach aimed at recognizing attachment in children of age
between 5 and 9 (previous multimodal approaches were designed
for adults [30]). While not being a pathology, insecure attachment
leads to lower quality of life [23] and, in some cases, to problems
as serious as antisocial behaviour and suicidal tendencies (see Sec-
tion 1). Some people affected by these extreme consequences cost to
society ten times more than an average individual [38]. Therefore,
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addressing the attachment recognition problem promises to limit
such a major societal burden. In addition, according to the Gartner
Group, a major strategic consulting firm, mental health is likely
to become one of the most important application areas for Artifi-
cial Intelligence (https://www.gartner.com/smarterwithgartner/13-
surprising-uses-for-emotion-ai-technology/). Correspondingly, at-
tachment recognition can become an important benchmark to as-
sess the effectiveness of AI in supporting the work of psychiatrists.
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